

Revision 1.0

14 July 2025

Copyright 2018 ArchiTek＆Safflow-Techno All Rights Reserved

English ver.

Confidential and Proprietary

SigImp

Specification

Imp Core

2

Table of Contents

1. Overview –

 1.1. Introduction –

 1.2. Main Parameters –

 1.3. Implementation Parameters –

2. Signal Lines –

 2.1. Control Bus Interface –

 2.2. PSS Interface –

 2.3. Memory Interface (Data Read Use) –

 2.4. Memory Interface (Data Write Use) –

 2.5. Memory Interface (Parameter Read Use) –

 2.6. Utility –

3. Architecture and Operation Overview –

 3.1. System Architecture –

 3.2. Operation Overview (Processing Order) –

 3.3. Input/Output Format –

 3.4. arithmetic section

 3.5. connection with pss –

 3.6. Performance –

4. Register Description –

 4.1. Overview –

 4.2. Definition –

 4.3. Details –

 4.3.1.1. Reset Register –

 4.3.1.2. System Register –

5. Command List Description –

 5.1. Overview –

 5.2. Definition –

 5.3. Details –

 5.3.1.1. Cntl Command –

 5.3.1.2. Data Source Base Address Command –

 5.3.1.3. Data Distination Base Address Command –

 5.3.1.4. Source Address Offset Y(Column) Command –

 5.3.1.5. Source Address Offset Z(Loop) Command –

 5.3.1.6. Destination Address Offset Y(Column) Command –

3

 5.3.1.7. Destination Address Offset Z(Loop) Command –

 5.3.1.8. Error Distination Address Command –

6. Application Notes –

 6.1. Additional Information –

 6.1.1. SRAM Usage –

4

1. Overview

1.1. Introduction

➢ This embedded core calculates the inverse of a square matrix of floating-point data in

memory using a pivot selection + Gauss-Jordan elimination algorithm.

➢ Supported data formats:

• 16-bit floating point (IEEE754)

• 32-bit floating point (IEEE754)

➢ The number of data points in the matrix can be configured for square matrices ranging from

2×2 to 16×16, including odd sizes. However, each row must be stored in contiguous

memory, while columns can use address offsets to jump to arbitrary locations.

Output data is also written in the same row-major format; columns follow the same structure

via offsets.

➢ Because of the algorithm’s nature, values close to infinity may be generated during

computation.

If an infinite value is detected, an error bit will be output to a designated memory location.

※ This case is rare due to pivot selection logic.

➢ This IP represents:

• Rows as the X-axis

• Columns as the Y-axis

• Repetitions as the Z-axis

Repeat control can be performed on the Z-axis via PSS.

➢ Once this IP is started, it does not stop until the operation is completed and the inverse matrix

is output.

➢ Note:

• The memory interface must be customized to your system.

• This IP can also be used without memory I/F as a standalone converter.

5

1.2 Main Parameters

Item Description

Memory Bus - Imp Data Read: 64-bit × 1

 - Imp Data Write: 64-bit × 1

 - Command List Read: 64-bit × 1

Supported Format 16-bit IEEE754 Float、32-bit IEEE754 Float

Supported Size Up to 16×16 square matrix

Clock Undefined (depends on implementation)

1.3 Implementation Parameters

Parameter Name Description Default Value

— (No implementation parameters) —

6

2. Signal Lines

2.1. Control Bus Interface

Signal Name IO Pol Source Description

cntlReq I + clk
• Request signal

• Evaluate cntlGnt

cntlGnt O + clk • Grant signal

cntlRxw I + clk

• R/W signal

• Evaluate cntlReq & cntlGnt

0: Write

1: Read

cntlAddr[31:0] I + clk
• Address signal

• Evaluate cntlReq & cntlGnt

cntlWrAck O + clk • Writ acknowledge signal

cntlWrData[31:0] I + clk
• Write data signal

• Evaluate cntlWrAck

cntlRdAck O + clk • Read acknowledge signal

cntlRdData[31:0] O + clk
• Read data signal

• Sync cntlRdAck

cntlIrq O + clk
• Interrupt signal

• Level hold type

7

2.2. PSS Interface

Signal Name IO Pol Source Description

iVld I + clk • Pipeline start valid signal

iStall O + clk • Pipeline start stall signal

iAddr[31:4] I + clk
• Address to fetch context data

• Evaluate iVld & !iStall

iDelta[15:0] I + clk
• Transfer volume

• Evaluate iVld & !iStall

iIndex[64:0] I + clk
• Five coodinates to specify the processing

• Evaluate iVld & !iStall

oVld O + clk • Pipeline end valid signal

oStall I + clk • Pipeline end stall signal

2.3. Memory Interface (Data Read Use)

Signal Name IO Pol Source Description

miReq O + clk • Request signal

miGnt I + clk • Grant signal

miAddr[31:0] O + clk • Address signal

miStrb O + clk • Read strobe signal

miAck I + clk • Read acknowledge signal

miData[63:0] I + clk • Read data signal

2.4. Memory Interface (Data Write Use)

Signal Name IO Pol Source Description

moReq O + clk • Request signal

moGnt I + clk • Grant signal

moAddr[31:0] O + clk • Address signal

moStrb O + clk • Write strobe signal

moAck I + clk • Write acknowledge signal

moData[63:0] O + clk • Write data signal

8

2.5. Memory Interface (Parameter Read Use)

Signal Name IO Pol Source Description

meReq O + clk • Request signal

meGnt I + clk • Grant signal

meAddr[31:0] O + clk • Address signal

meStrb O + clk • Read strobe signal

meAck I + clk • Read acknowledge signal

meData[63:0] I + clk • Read data signal

meFlush O + clk • Last Data signal

2.6. Utility

Signal Name IO Pol Source Description

rstReq O + clk • Internal reset signal to reset the external system

rstAck I + clk • Acknowledge of rstReq

fReq I + clk
• 1 clock early request against the iVld signal

• Use to generate gate signal (for pss)

pReq O + clk

• 1 clock early request against the all memory

access signal

• Use to generate gate signal (for memory)

gate[x:0] O + clk
• Gated clock control signal signifying condition of

each internal block

gclk[x:0] I + clk • Gated clock

Clk I ＋ clk • Clock

reset_n I - - • Asynchronous reset signal

9

3. Architecture and Operation Overview

3.1. System Architecture

➢ The Pipeline Slice Scheduler (PSS) fetches the necessary context data from memory and

generates coordinate and control information to start the SigImp core.

For more details on PSS, please refer to the PSS specification.

The interface is simple, so using PSS is not mandatory—you may replace it with your own

control logic if desired.

➢ SigImp operates as a pipeline as shown in Figure 1 (Block Diagram).

An Initiator retrieves parameters from the command list in memory and manages overall

control.

Data is repeatedly processed by transferring between memory and banked SRAM and by

performing operations in the processing unit.

➢ In SigImp, the iDelta signal is not used..The relevant input signals are:iIndex、iAddr and iVld.

10

➢ The circuit block diagram is as follows

The matrix data retrieved from memory (chache) is inversed using the Divider and MultiSub

arithmetic units, and the result of the operation is written back to memory (chache).

11

3.2. Operation Overview (Processing Flow)

➢ The PSS scans destination coordinates along arbitrary axes and sends the result to the

Initiator. Settings for PSS (like processing units) are preloaded into memory. PSS manages

up to 256 configurations (depending on implementation), and schedules SigImp execution in

time-division manner.

➢ SigImp uses:

• iIndex (Z-axis, i.e. repetitions),

• ADDR, and

• VLD signals.

➢ You can repeat inverse matrix computations with the same matrix size multiple times in a

single launch. If using iIndexY for control (configurable via command), set the input to (number

of repetitions - 1). Setting it to 0 performs a single execution. Read/write addresses for each

repetition change based on the Address Offset set in the Cntl Command.

➢ The Initiator:

12

• Reads context info from PSS,

• Performs pipeline setup.

Context parameters are double-buffered, ensuring no performance degradation unless the

PSS specifies extremely short operations.

➢ When Initiator starts, mem_read begins transferring data from memory. mem_read converts

the data from the specified format to the internal comparison format and then stores the

data in internal memory.

➢ After transferring the mem_read data, pivot selection is performed in the arithmetic block

(comparison and reordering). After the pivot selection process, inverse matrix operations are

performed in the sweep method. This is done for each column, and the final result is calculated.

➢ After the operation is finished, memory_wr starts to transfer data to memory. memory_wr

stores data (address information and data) in memory after converting to the original format.

*Address information can be selected from the command.

3.3. Input/Output Format

➢ SigImp supports the following floating-point formats for input and output:

• 32-bit single-precision floating point (IEEE 754)

• 16-bit half-precision floating point (IEEE 754)

※ the internal arithmetic unit uses a 32-bit arithmetic unit.

Half-precision floating-point numbers are converted once to single-precision floating-point

numbers, and then converted back to half-precision floating-point numbers after the

operation is completed.

➢ Basically, mappings in memory are stored in order from the LSB direction. To swap the order,

manipulate the Byte Swap and Word Swap parameters in the memory operation.

13

➢ The following is an example of memory placement for the following matrix array. When

crossing rows, address jumps can be made at address offset Y (column).

14

3.4. arithmetic section

➢ SigImp uses a pivot selection and sweep method to perform iterative operations and output

the final inverse matrix. The algorithm of the arithmetic part is described below in C code.

Figure 1 C code（１）

15

Figure 2 C code（2）

16

3.5. connection with pss

➢ The command list is retrieved from memory based on the address output by the PSS (iAddr).

For details on the command list, please refer to the Command List Description. If PSS does

not exist, access the PSS interface directly.

➢ Normally, data R/W is performed while the address is incremented in memory word units.

3.6. Performance

➢ From startup to termination, the added value of the cycle overhead required for memory

access is required, but the arithmetic operations are about 380 cycles for an 8x8 square

matrix and about 820 cycles for a 16x16 matrix.

Matrix Size Compute Cycles (Imp Block) Total Instruction Count (Approx.)

8×8 ~380 cycles ~4,608 instructions

16×16 ~820 cycles ~34,560 instructions

32×32 ~3,268 cycles ~268,800 instructions

17

4. Register Description

4.1. Overview

➢ All registers are accessed via the Control Bus.

➢ Be cautious when setting certain registers, as some may affect pipeline operation or

performance depending on timing.

➢ The following symbols indicate access types:

Symbol Meaning

R Read Only (write has no effect)

R/W Read / Write

R/WC Read / Write Clear

➢ Do not access reserved registers, and for reserved fields, always write '0'.

➢ In address and data fields, 'x' indicates a Don't Care value.

4.2. Definition (Register List)

Address Register Name Description

0x0000_0000 Reset Reset control

0x0000_0004 System System control

18

4.3. Details

4.3.1.1. Reset Register

Name Type Default Description

Reset R/W 0

Synchronous reset. After setting ‘1’, it is necessary to clear ‘0’. Unlike the

reset_n signal, the contents of the register are retained.

After setting ‘1’, immediately assert the rstReq signal. This signal notifies

the external system that SigImp is in reset state and requests a response.

Once the response is complete, the rstAck signal must be asserted (if no

response is required, always assert ‘1’). After these procedures are

complete, the Reset automatically returns to ‘0’.

4.3.1.2. System Register

Name Type Default Description

Swap R/W 0

Enables Word Swap. If set to 1, swaps the upper and lower 32-bit halves

of the 64-bit bus. (Swaps within a 32-bit word are configured via the

command list.)

GateOff R/W 0
Gate clock off mode. When set to 1, all bits in the gate signal are forced to

'1', disabling gated clocks.

19

5. Command List Description

5.1. Overview

• The starting address of the command list is specified by the address output from the PSS.

After SigImp is activated, it retrieves the command list from memory and stores it in

internal registers.

• Each stage of the pipeline manages its own command list independently, so different

stages can operate with different commands concurrently during pipeline execution.

Therefore, synchronization commands are not required.

• For reserved registers or fields, always set them to '0'.

• All addresses listed here are relative to the base address provided by PSS.

5.2. Definition (Command List Table)

Address Command Name Description

00 Cntl Control command

04
Data Source Base

Address
Source base address for reading data

08
Data Distination Base

Address
Base address for writing output data

0C
Source Address

Offset Y
Offset per column during read

10
Source Address

Offset Z
Offset per repetition during read

14
Destination Address

Offset Y
Offset per column during write

18
Destination Address

Offset Z
Offset per repetition during write

1C
Error Distination

Address
Memory address for writing error results

20

5.3. Details

5.3.1.1. Cntl Command

5.3.1.2. Data Source Base Address Command

5.3.1.3. Data Distination Base Address Command

21

5.3.1.4. Source Address Offset Y(Column) Command

5.3.1.5. Source Address Offset Z(Loop) Command

5.3.1.6. Destination Address Offset Y(Column) Command

5.3.1.7. Destination Address Offset Z(Loop) Command

22

5.3.1.8. Error Destination Address Command

23

6. Application Notes

6.1. Additional Information

6.1.1. SRAM Usage

➢ No SRAM to use.

All temporary buffers are in FF configuration.

