

Revision 1.1

14 July 2025

English ver.

Copyright 2011 ArchiTek All Rights Reserved

Confidential and Proprietary

SigFFT Specification

Signal FFT Core

2

1. Overview …

1.1. Introduction …

1.2. Main Parameters …

1.3. Implementation Parameters …

2. Signal Lines …

2.1. Control Bus Interface …

2.2. PSS Interface …

2.3. Memory Interface (Data R/W Use) …

2.4. Memory Interface (Parameter Read Use) …

2.5. Utility …

3. Structure and Operation Description …

3.1. Structural Overview …

3.2. Operational Overview (Processing Order) …

3.3. Input/Output Format …

3.4. Internal Computation …

3.5. Connection with pss …

3.6. Performance …

3.7. Additional Features …

4. Register Description …

4.1. Overview …

4.2. Definition …

4.3. Details …

4.3.1.1. Reset Register …

4.3.1.2. System Register …

5. Command List Description …

5.1. Overview …

5.2. Definition …

5.3. Details …

5.3.1.1. MasterCntl Command …

5.3.1.2. MemCntl Command …

5.3.1.3. SrcSize Command …

5.3.1.4. SrcOffset (Re) Command …

5.3.1.5. MapInfo Command …

5.3.1.6. MapBase Command …

5.3.1.7. StackInfo Command …

5.3.1.8. StackBase Command …

3

5.3.1.9. SrcInfo(Re/Im) Command …

5.3.1.10. SrcBase(Re/Im) Command …

5.3.1.11. DstInfo(Re/Im) Command …

5.3.1.12. DstBase(Re/Im) Command …

4

1. Overview

1.1. Introduction

• The Signal FFT Core (hereinafter referred to as sigFFT) is an embedded core that

performs high-speed Discrete Fourier Transform (FFT) from a source image to a

destination image.

• It processes the destination image by repeatedly performing one-dimensional

transformations while scanning the required portions of the source image on a line-by-

line basis. Ultimately, both horizontal and vertical transformations are required.

• The line unit must be a power of 4. Time-division processing (i.e., splitting by line units) is

not supported.

• Supported pixel formats include 8-bit (fixed-point), 16-bit (IEEE754 Binary16), and 32-bit

(IEEE754). Internal processing is performed in single precision.

• A one-cycle-throughput butterfly processor (Radix-4) is used, and the entire pipeline—

including memory accesses—is fully pipelined. For N pixels, the maximum performance is

achieved in N/4 × log₄N cycles.

Note：

• The memory interface (I/F) must be customized according to the system.

• It is also possible to use the core as a transformation component without utilizing the

memory interface.

1.2. Main Parameters

• Memory Bus

Data Read/Write: 64-bit × 1

Command List Read: 64-bit × 1

• Throughput

5

Radix-4 butterfly operation per cycle

• Supported Formats

8-bit component (monochrome), 16-bit float, 32-bit float

• Supported Size

2N-point FFT/IFFT

• Clock

Undefined (depends on implementation process)

1.3. Implementation Parameters

Parameter Name Description Default Value

MRR

• Radix (2ⁿ) of the maximum processing size N

• Any value other than the specified one requires

design modification, as it affects the capacity and

structure of the SRAM

10

BLR
• Radix of burst length of externa(parameter) bus

• Configurable burst unit for 64-bit memory access
1 (4 or less)

BSR
• Radix of burst length of data bus

• Configurable burst unit for 64-bit memory access
1 (4 or less)

6

2. Signal Lines

2.1. Control Bus Interface

Signal Name IO Pol Source Description

cntlReq I + clk
• Request signal

• Evaluate cntlGnt

cntlGnt O + clk • Grant signal

cntlRxw I + clk

• R/W signal

• Evaluate cntlReq & cntlGnt

0: Write

1: Read

cntlAddr[31:0] I + clk
• Address signal

• Evaluate cntlReq & cntlGnt

cntlWrAck O + clk • Writ acknowledge signal

cntlWrData[31:0] I + clk
• Write data signal

• Evaluate cntlWrAck

cntlRdAck O + clk • Read acknowledge signal

cntlRdData[31:0] O + clk
• Read data signal

• Sync cntlRdAck

cntlIrq O + clk
• Interrupt signal

• Level hold type

7

2.2. PSS Interface

Signal Name IO Pol Source Description

iVld I + clk • Pipeline start valid signal

iStall O + clk • Pipeline start stall signal

iAddr[31:4] I + clk
• Address to fetch context data

• Evaluate iVld & !iStall

iDelta[15:0] I + clk
• Transfer volume

• Evaluate iVld & !iStall

iIndex[64:0] I + clk
• Five coodinates to specify the processing

• Evaluate iVld & !iStall

oVld O + clk • Pipeline end valid signal

oStall I + clk • Pipeline end stall signal

2.3. Memory Interface (Data R/W Use)

Signal Name IO Pol Source Description

miReq O + clk • Request signal

miGnt I + clk • Grant signal

miRxw O + clk • R/W signal

miAddr[31:0] O + clk • Address signal

miBurst[BSR-1:0] O + clk • Burst signal

miRdStrb O + clk • Read strobe

miRdAck I + clk • Read acknowledge signal

miRdData[63:0] I + clk • Read data signal

miWrStrb O + clk • Write strobe signal

miWrAck I + clk • Write acknowledge signal

miWrData[63:0] O + clk • Write data signal

miWrMask[7:0] O + clk • Write mask signal

8

2.4. Memory Interface (Parameter Read Use)

Signal Name IO Pol Source Description

meReq O + clk • Request signal

meGnt I + clk • Grant signal

meAddr[31:0] O + clk • Address signal

meStrb O + clk • Read strobe signal

meAck I + clk • Read acknowledge signal

meData[63:0] I + clk • Read data signal

2.5. Utillity

Signal Name IO Pol Source Description

rstReq O + clk • Internal reset signal to reset the external system

rstAck I + clk • Acknowledge of rstReq

fReq I + clk
• 1 clock early request against the iVld signal

• Use to generate gate signal (for pss)

pReq O + clk

• 1 clock early request against the all memory

access signal

• Use to generate gate signal (for memory)

gate[6:0] O + clk
• Gated clock control signal signifying condition of

each internal block

gclk[6:0] I + clk • Gated clock

clk I ＋ clk • Clock

reset_n I - - • Asynchronous reset signal

9

3. Structure and Operation Description

3.1. Structural Overview

➢ The Pipeline Slice Scheduler (hereinafter referred to as pss) retrieves the necessary

context from memory, generates coordinate and related information, and initiates sigFFT.

For more details on pss, please refer to its dedicated specification document. Since the

connection interface is simple, using pss is not mandatory; in such cases, consider

replacing the pss component with your own custom core.

➢ The sigFFT is structured as a pipeline as shown in Figure 1. The Initiator retrieves

parameters from a command list stored in memory and manages overall control. Data is

processed by repeatedly interacting with memory and the butterfly processor, centering

around a banked SRAM architecture.

➢ The maximum processing size is proportional to the capacity of the onboard SRAM. The

SRAM is composed of 8 banks in total, supporting 4 simultaneous accesses by the

butterfly processor and 2 simultaneous memory accesses.

10

3.2. Operational Overview (Processing Sequence)

➢ The pss scans the destination coordinates along an arbitrary axis direction and sends the

results to the Initiator. Settings for pss (such as image information and processing units)

must be preloaded into memory. The pss can manage up to 256 different configurations

(depending on the implementation) in a time-division manner and schedules execution to

drive sigFFT.

➢ The Initiator reads the context provided by the pss, which includes image information,

and performs the initial setup of the pipeline. The parameters extracted from the context

are managed with double buffering, so performance degradation does not occur unless the

processing unit designated by pss is extremely small.

➢ Once the Initiator is activated, the Loader begins transferring data from memory to SRAM.

The Loader converts the input from its specified format to the internal processing format

(single-precision floating-point), then performs FFT-specific address transformation

before storing the data into SRAM.

➢ After the data transfer by the Loader is complete, the butterfly processor repeatedly

processes the data in SRAM. The butterfly processor has a latency of 10 cycles and a

throughput of 1 cycle, processing four complex data elements at a time (Radix-4). The

number of cycles required to process N points is N/4 × log₄N.

➢ Upon completion of the butterfly operation, the Storer begins transferring data from SRAM

back to memory. The Storer converts the data from the internal SRAM format to the

specified output format before storing it in memory.

11

➢ The Loader and Storer operate mutually exclusively, but they can function independently

of the butterfly processor. As a result, it is possible to overlap butterfly processing with

Loader/Storer operations, enabling efficient pipelined processing.

3.3. Input/Output Format

➢ The core supports the following data formats.

Fixed-point format represents values divided by 256.

Floating-point format handles a subset of the IEEE754 standard.

A format that converts RGB format into grayscale values is also supported.

➢ In memory mapping, data is generally stored in order from the Most Significant Byte (MSB)

downward. To change the order, adjust the Byte Swap and Word Swap parameters in the

12

memory operation settings.

➢ Real (Re) and Imaginary (Im) components are stored in separate planes (see Figure 5).

Each requires its own independent base address.

3.4. Internal Computation

➢ All computations are performed by the butterfly processor. All internal data

representations, including coefficients, use single-precision floating-point format.

➢ Any precision beyond the internal representation in computation results is truncated.

Extremely small values that cannot be represented are rounded to zero, while extremely

large values cannot be guaranteed.

➢ When converting to a different format, values outside the representable range of the

specified format are rounded to the maximum or minimum representable value.

➢ NaN and Infinity values propagate through computation; therefore, input data must avoid

including such values.

3.5. Connection with pss

➢ Based on the address output by pss (iAddr), the command list is retrieved from memory.

For details on the command list, refer to the corresponding command list section. If pss

is not present, access the pss interface directly.

➢ Using the coordinate (iIndex) output by pss and the parameters in the command list, the

starting addresses for the input and output image data are calculated. Zero-order

13

coordinates are not handled. The initial address is determined using the following

calculation. Here, Y and Z are the first-order and second-order coordinates, respectively,

and StrideY and StrideZ are the step values for coordinate changes (units vary depending

on the format). The addressing mode defines whether Y and Z are referenced and how

the strides are set.

➢ Normally, data is read or written by incrementing the address in memory word units. In

contrast, for transposition, data is read or written by adding the stride value. As with the

initial address calculation, these behaviors are defined by the addressing mode. In general,

performance is better when transposition is not used.

➢ Swapping of first-order and second-order coordinates is handled by pss.

➢ The transfer length output by pss (iDelta) must generally match the FFT length. If it does

not match, the following processing will occur (details to follow).

Condition Memory Access Data Processing

iDelta > N Read/Write only N pixels Process N pixels

iDelta < N
Read/Write only iDelta

pixels

Pad remaining values with

zero up to N pixels

➢ Real (Re) and Imaginary (Im) components that are not required can be excluded from

memory access and treated as zero during processing.

3.6. Performance

➢ From start to finish, the total number of cycles required includes both memory access

cycles (Load/Store) and the butterfly computation time, which is N/4 × log₄N cycles.

When executions are continuous and N is sufficiently large (e.g., N = 256), the butterfly

computation becomes the dominant factor, effectively hiding the memory access time. In

such cases, N/4 × log₄N cycles represent the maximum throughput.

➢ For reference, consider the case where memory performance is at the maximum of 64

14

bits per cycle, and the data being handled is 16 bits per word. Note that in practice,

additional pipeline overhead (approximately 10 cycles) must be added to this.

 N=16 N=64 N=256 N=1024

Single-shot 24 112 512 2304

Continuous 16 64 256 1280

※The shaded area indicates where memory cycles dominate during continuous execution.

3.7. Additional Features

➢ A transformation map placed in memory can be used to convert input indices (X, Y) into

coordinates (X, Y), allowing specification of the FFT/IFFT starting position using 2D

addressing. This is controlled via MemCnt.SrcRemap, MapInfo, and MapBase. In image

processing, it enables transformation from arbitrary XY positions. Note that this operation

is executed each time the X index changes by one.

➢ A window function can be applied before executing the FFT/IFFT by setting SrcInfo.Exp

to 3. Either the real or imaginary signal series is used as a one-to-one coefficient

sequence for the window. This feature takes advantage of the case where either the real

or imaginary part is zero, using that series as the coefficient. When processing an entire

2D region at once, ensure that the coefficient sequence does not use SrcSize or SrcOffset

by setting SrcInfo.Div to 15.

➢ It is possible to apply FFT/IFFT over a combined 2D region. For example, for a 1024-point

FFT with SrcInfo.Div set to 2 (for 1/4 division), scanning is performed in the X direction

with 256 points and in the Y direction with 4 lines, executing the 1024-point FFT in

aggregate. Since different signal sequences are involved, edge effects must be addressed

using window functions or similar techniques.

➢ The maximum value and its corresponding position from the above processing can be

written to memory. This is controlled using MemCnt.DstStack, StackInfo, and StackBase.

15

4. Register Description

4.1. Overview

➢ Each register is accessed via the control bus.

➢ Since some settings may affect pipeline operation or performance, care must be taken

regarding the timing of configuration.

➢ In the detailed register descriptions, the following symbols are used to indicate access

types:

o R: Read Only (writes have no effect)

o R/W: Read / Write

o R/WC: Read / Write Clear

➢ Do not access registers marked as Reserved. When writing to reserved fields, always

set the value to '0'.

➢ The character 'x' in address or data representations indicates "don't care".

4.2. Definition

Address Register Name Description

0000_0000 Reset Reset control

0000_0004 System System control

4.3. Details

16

Name Type Default Description

Reset R/W 0 Synchronous reset. Requires setting to '1' followed by

clearing to '0'.

Unlike the reset_n signal, register contents are retained.

 After setting to '1', the rstReq signal is immediately

asserted. This signal notifies external modules that

sigFFT has entered a reset state and requests their

response.

Once the response is completed, the rstAck signal must

be asserted (or kept asserted at all times if no response

is necessary).

After these procedures are completed, the Reset

automatically returns to '0'.

Name Type Default Description

Swap R/W 0 Word Swap setting.

When set to '1', the upper 32 bits and lower 32 bits of

the 64-bit bus are swapped.

Swapping within a 32-bit word is specified in the

command list.

GateOff R/W 0 Gated Clock Off Mode. When set to '1', all bits of the

gate signal are fixed to '1'.

17

5. Command List Description

5.1. Overview

➢ The command list's starting address is specified by the address value output from pss. After

sigFFT is triggered, it retrieves the command list and stores it in internal registers.

➢ The command list is managed completely independently within each stage of the pipeline.

This allows different stages to hold and operate on different command lists even while the

pipeline is running. Therefore, no synchronization commands are necessary.

➢ Reserved registers and fields must be set to '0'.

➢ The addresses shown are relative to the address value output by pss.

5.2. Definition

Address Command Name Description

00 MasterCntl Master control

04 MemCntl Memory control

08 SrcSize Source size

0c SrcOffset Source offset

10 MapInfo Map inforrmation

14 MapBase Map address

18 StackInfo Stack information

1c StackBase Stack address

20 SecInfo(Re) Source Real Number Information

24 SrcBase(Re) Source Real Number address

28 SrcInfo(Im) Source Imaginary Number Information

2c SrcBase(Im) Source Imaginary Number address

30 DstInfo(Im) Destination real number information

34 DstBase(Re) Destination real number address

38 DstInfo(Im) Destination imaginary number information

3c DstBase(Im) Destination imaginary number address

18

5.3. Deftails

Name Description

Addr[31:8] Context address for reading the processing volume.

Context Set to '1' when reading the processing volume.

Norm Performs normalization.

For a forward FFT, the output is scaled by 1/2^{Radix[3:1]}.

For an inverse IFFT, the output is scaled by 1/2<sup>Radix[3:1] +

Radix[0]</sup>.

Inv Set to '0' for FFT, and '1' for IFFT.

Radix[3:0] Set log₂N as the processing size N.

The value must be between 4 and 10 (inclusive).

19

Name Description

DstClip When the destination data output is shifted so that the peak value is

centered, values that exceed the output width are clipped to zero.

DstStep Each time the X index is updated, the destination data output address is

incremented by the output width.

DstStack The peak value and its index of the destination data output are written to

the memory indicated by the Stack address.

DstPeak[3:0] Set the conditions for calculating the peak value of the destination data

output.

DstPeak[3:2] Description

0 Search by absolute value

1 Reserved

2 Search for positive values

3 Search for negative values

DstPeak[1:0] Description

0 Reserved

1 Reserved

2 Search for real number values

3 Search for imaginary number values

DstEn[1:0] Set the permission for outputting the destination data.

DstEn[1] Description

0 Do not allow imaginary output

1 allow imaginary output

DstEn[0] Description

0 Do not allow real number output

1 allow real number output

SrcRemap[1:0] Set the transformation method for the reference coordinate values of the

source data.

The reference coordinates are obtained from the Map address indicated

by the indices X and Y.

20

SrcRemap Description

0 No transformation

1

Obtain new reference coordinates X and Y from

memory based on indices X and Y, and perform the

transformation.

2

Obtain offset coordinates X and Y from memory

based on indices X and Y, then add them to the

indices to convert to reference coordinates X and

Y.

3

Obtain offset coordinates X and Y from memory

based on indices X and Y, then subtract them from

the indices to convert to reference coordinates X

and Y.

SrcCeil When the source data is 8-bit fixed-point, 0xFF is considered as 1.0.

SrcEn[1:0] Set the permission for inputting the source data.

SrcEn[1] Description

0 Do not allow imaginary input (treat as zero)

1 Allow imaginary input

SrcEn[0] Description

0 Do not allow real input (treat as zero)

1 Allow real input

Name Description

Y[15:0] Set the input width size of the source in the X direction.

Data at coordinates exceeding this width will be clipped to zero.

If set to 0, the setting is disabled.

21

X[15:0] Set the input width size of the source in the Y direction.

Data at coordinates exceeding this height will be clipped to zero.

If set to 0, the setting is disabled.

Name Description

Y[15:0] Set the offset of the source in the X direction.

Value is in two's complement format.

X[15:0] Set the offset of the source in the Y direction.

Value is in two's complement format.

Name Description

Stride[15:0] Set the address update stride minus 1 for Y-coordinate updates in the

map data.

Applicable when SrcRemap ≠ 0.

Swap[1:0] Set the Half Word Swap for map data.

Performs mapping from input data In[31:0] to output data Out[31:0].

Each half-word segment in Out[31:0] is controlled by the corresponding

bit in Swap[1:0].

Each bit in Swap selects one half-word from In[31:0].

In principle, mapping is done one-to-one.

If not, unmappable lanes or overlapping mapped lanes may occur.

Value
Swap[1] Swap[0]

Out[31:16] Out[15:0]

0 Pipe[31:16] Pipe[15:0]

22

1 Pipe[15:0] Pipe[31:16]

PrecX/PrecY[4:0] Set the precision for the X and Y values in the map data.

Coordinate values are represented in two's complement:

if the value is positive, it is right-shifted by that amount;

if negative, it is left-shifted by the magnitude of the value.

Name Description

Base[31:6] Set the base address of the map data.

It must be aligned to a 64-byte boundary.

Applicable when MemCntl.SrcRemap ≠ 0.

 Wrap[5:0] By setting the MSB to '1', the remaining 5 bits are used to enable the

mask position.

The mask applies from the MSB of the address down to the specified bit

position (inclusive).

For example, if the value is 37, the upper 6 bits of the generated address

remain the same as those of the base address, and only the lower 26 bits

are modified.

Wrap Description

0 No mask

1-31 Reserved

32-62 Bits [62–n:0] of the generated address are valid.

63 The address value is always the same as the base.

23

Name Description

Stride[15:0] Refer to MapInfo.Stride. Applicable when MemCntl.DstStack = 1.

Name Description

Base[31:6] Refer to MapBase.Base. Applicable when MemCntl.DstStack = 1.

Wrap[5:0] Refer to MapBase.Wrap

Name Description

Stride[15:0] Refer to MapInfo.Stride

Swap[7:0] Configure Byte Swap for the source data (real/imaginary).

Performs byte-wise mapping from input data In[31:0] to internal data

Pipe[31:0].

If the mapping is not one-to-one, undefined values or overlapping

assignments may occur.

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

Pipe[31:24] Pipe[23:16] Pipe[15:8] Pipe[7:0]

0 In[31:24] In[23:16] In[15:8] In[7:0]

1 In[7:0] In[31:24] In[23:16] In[15:8]

2 In[15:8] In[7:0] In[31:24] In[23:16]

3 In[23:16] In[15:8] In[7:0] In[31:24]

Div[3:0] Perform 2D expansion of the source data (real/imaginary).

24

The data is divided into 2^{Div} segments along the X-axis for

a total of 2^{MasterCntl.Radix} elements, and 2^{Div}

processing steps are performed along the Y-axis.

If Div is 15, operations on X and Y are disabled.

This setting is used when applying different processing to paired data (e.g.,

using a window function on the real part while treating the imaginary part

differently, or vice versa).

Exp[1:0] Configure the operation for the source data (real/imaginary).

Exp Description

0 No operation

1 Reserved

2 Zero value

3
Multiplication with the paired component (real if

imaginary, imaginary if real)

Format[1:0] Set the format of the source data (real/imaginary).

Format Description

0
8bpp (positive fixed-point values less than 1.0; if

MemCntl.SrcCeil is set to 1, 0xFF is treated as 1.0)

1 16bpp (half-precision float)

2
32bpp (internally treated as integer; uses Gray =

(Pipe[23:16] * 2 + Pipe[15:8] * 5 + Pipe[7:0]) / 8)

3 32bpp (single-precision float)

Name Description

Base[31:6] refer to MapBase.Base

25

 Wrap[5:0] refer to MapBase.Wrap

Wrap Description

0 No mask

1-31 Reserved

32-62 Bits [62–n:0] of the generated address are valid.

63 The address value is always the same as the base.

Name Description

Stride[15:0] refer to SrcInfo.Stride

Swap[7:0] Configure Byte Swap for the destination data.

Performs byte-wise mapping from internal data Pipe[31:0] to output data

Out[31:0].

If the mapping is not one-to-one, undefined values or overlapping

assignments may occur.

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

Out[31:24] Out[23:16] Out[15:8] Out[7:0]

0 Pipe[31:24] Pipe[23:16] Pipe[15:8] Pipe[7:0]

1 Pipe[23:16] Pipe[15:8] Pipe[7:0] Pipe[31:24]

2 Pipe[15:8] Pipe[7:0] Pipe[31:24] Pipe[23:16]

3 Pipe[7:0] Pipe[31:24] Pipe[23:16] Pipe[15:8]

Format[1:0] Set the format of the destination data (real/imaginary).Destination

Format Description

0
8bpp (positive fixed-point; negative values are

treated as 0)

1 16bpp (half-precision float)

26

2 Reserved

3 32bpp (single-precision float)

Name Description

Base[31:6] refer to MapBase.Base

 Wrap[5:0] refer to MapBase.Wrap

