

Revision 0.2

31 July 2025

English ver.

Copyright 2011 ArchiTek All Rights Reserved

Confidential and Proprietary

Pico Processor

Specification
Kernel Processor

2

1. Overview  

 1.1. Introduction 

 1.2. Main Parameters 

 1.3. Implementation Parameters 

2. Signal Lines 

 2.1. Control Bus Interface 

 2.2. PSS Interface 

2.3. Aux Bus Interface 

2.4. Memory Interface (Data Use) 

2.5. Memory Interface (Parameter Read Use) 

2.6. Register File Interface (Write Port X) 

2.7. Register File Interface (Write Port Y) 

2.8. Register File Interface (Read Port) 

2.9. Scalar Register Interface

2.10. Interrupt for psss  

2.11. Utility 

3. Architecture and Operation Description  

 3.1. Notation 

 3.2. Structural Overview 

 3.3. Driving Interface (Initiator) 

 3.4. Notes on Fragmentation 

 3.5. Start and End of Instructions 

 3.6. Constant Setting 

 3.7. Integer Operations 

 3.8. Floating-Point Operations 

 3.9. Floating-Point Adjustment 

 3.10. Operands 

 3.11. Constants 

 3.12. Type Conversion 

 3.13. Scalarization 

 3.14. Branch Control 

 3.15. Register Update Control 

 3.16. Condition Codes (CC) and User Flags (Flag) 

 3.17. Memory Access 

 3.18. Flow Control 

4. Instruction Description 

3

 4.1. Overview

 4.2. Control Instructions (Cntl) 

 4.3. Integer Arithmetic Instructions (Int) 

 4.4. Memory Instructions (Mem) 

 4.5. Floating-Point Instructions (Mad) 

 4.6. Hyperfunction Instructions (Hyp) 

5. Control Register Description 

 5.1. Overview 

 5.2. Definition 

 5.3. Details 

 5.3.1. Reset Register 

 5.3.2. Clock Register 

 5.3.3. Info Register 

 5.3.4. IntEn Register 

 5.3.5. Cntl Register 

5.3.6. IRVal Register 

 5.3.7. SeedX Register 

 5.3.8. MonitorXY Register 

 5.3.9. MonitorZW Register 

 5.3.10. MonitorPC Register 

 5.3.11. BreakXY Register 

 5.3.12. BreakZW Register 

 5.3.13. BreakPC Register 

6. Application Notes 

 6.1. Processing Volume 

 6.2. Regarding Hyperbolic Instructions

6.3. Image Processing Exampl

 6.3.1. Mandelbrot Rendering 

4

1. Overview

1.1. Introduction

• The Pico Processor (Kernel Processor version, hereafter referred to as "kp") is a compact,

high-performance processor. Designed with a SIMD (Single Instruction Multiple Data)

architecture, it delivers excellent performance for applications involving repetitive

operations such as image processing.

• It supports easy addition of arithmetic pipelines, increased computation precision, and

finer granularity of pipeline stages, offering excellent scalability in both functionality and

performance.

• The instruction set includes control instructions, integer arithmetic, memory access,

floating-point arithmetic, and transcendental functions (e.g., trigonometric functions). All

instructions execute in a single cycle, although memory access may incur system-level

penalties.

• At implementation, arithmetic pipelines can be parallelized in powers of two. Similarly,

SRAM capacity can be scaled in powers of two to support an increased number of logical

processors.

• Users do not need to be aware of the degree of parallelism in the physical processors

when programming. Performance efficiency does not degrade due to increased parallelism.

• The processing units support 16-bit and 32-bit integers, as well as half-precision and

single-precision floating-point formats. It handles registers and constants in units of 16

entries × the number of banks.

• It supports conditional branching and conditional register updates.

• The assignment of command fields varies depending on the Ver register. In addition, a

simplified 64-bit instruction format is provided alongside the standard 128-bit instructions.

1.2. Key Parameters

• Memory Bus

Memory Read/Write: 32-bit × 2PNR

Instruction Read: 64-bit

• Physical Processors

× 2PNR (PNR is determined at implementation)

• Logical Processors

5

× 2LNR (LNR is determined at implementation; proportional to SRAM capacity: 64 Bytes

× 2LNR)

• Throughput

Up to 2PNR instructions per cycle

• Clock

Undefined (depends on the implementation process)

1.3. Implementation Parameters

Parameter

Name
Description Default Value

LNR • Radix of logical processor number 12

PNR • Radix of phygical processor number 3

BLR

• Radix of Burst Length for Command List

Loading

• Configure Burst Unit for 64-bit Memory Access

1（4 以下）

BKR • Radix of register bank bumber 3

CLR • Radix of pss channel number 6

BSR
• Data R/W の Radix of burst length

• Configure Burst Unit for 64-bit Memory Access
2（4 以下）

SLR • Radix of scalar number 11

2. Signal

2.1. Control Bus Interface

Signal Name IO Pol Source Description

cntlReq I + clk
• Request signal

• Evaluate cntlGnt

cntlGnt O + clk • Grant signal

6

cntlRxw I + clk

• R/W signal

• Evaluate cntlReq & cntlGnt

0: Write

1: Read

cntlAddr[31:0] I + clk
• Address signal

• Evaluate cntlReq & cntlGnt

cntlWrStrb I + clk
• Write storobe signal

• Evaluate cntlWrAck

cntlWrAck O + clk • Writ acknowledge signal

cntlWrData[31:0] I + clk
• Write data signal

• Evaluate cntlWrAck

cntlRdStrb I + clk
• Read strobe signal

• Evaluate cntlRdAck

cntlRdAck O + clk • Read acknowledge signal

cntlRdData[31:0] O + clk
• Read data signal

• Sync cntlRdAck

cntlIrq O + clk
• Interrupt signal

• Level hold type

2.2. PSS Interface

Signal Name IO Pol Source Description

iVld I + clk • Pipeline start valid signal

iStall O + clk • Pipeline start stall signal

iCID[CNR-1:0] I + clk • Logocal channel number

iEnd[3:0] I + clk • Information of end of indexes

7

iAddr[31:0] I + clk

• Address to fetch context data

• Evaluate iVld & !iStall

• iAddr[31:BKR+4] and iAddr[1:0] indicates

program start address

• iAddr[BKR+3:4] indicates offset of logical

register bank when Cntl.BankAdd=1 otherwise

indicates start address[BKR+3:4]

• iAddr[3] indicates offset of program counter

when Cntl.BaseAdd=1 otherwise indicates

start address[3]

• iAddr[2] indicates select of volume whether

iDelta or TR register

iDelta[15:0] I + clk
• Transfer volume

• Evaluate iVld & !iStall

iIndex[64:0] I + clk
• Five coordinates to specify the processing

• Evaluate iVld & !iStall

oVld O + clk • Pipeline end valid signal

oStall I + clk • Pipeline end stall signal

2.3. Aux Bus Interface

Signal Name IO Pol Source Description

auxReq O + clk
• Request signal

• Evaluate cntlGnt

auxGnt I + clk • Grant signal

auxRxw O + clk

• R/W signal

• Evaluate cntlReq & cntlGnt

0: Write

1: Read

auxAddr[31:0] O + clk
• Address signal

• Evaluate cntlReq & cntlGnt

auxWrStrb O + clk • Writ strobe signal

auxWrAck I + clk • Write ack

auxWrData[31:0] O + clk
• Write data signal

• Evaluate auxAck

auxWrMask[3:0] O + clk • Write mask signal

8

auxRdStrb O + clk • Read strobe signal

auxRdAck I + clk • Read acknowledge signal

auxRdData[31:0] I + clk • Read data signal

2.4. Memory Interface (Data Use)

Signal Name IO Pol Source Description

miReq[2PNR-1:0] O + clk • Request signal

miGnt[2PNR-1:0] I + clk • Grant signal

miRxw[2PNR-1:0] O + clk • R/W signal

miAddr[35*2PNR-

1:0]
O + clk • Address signal

miWrStrb[2PNR-

1:0]
O + clk • Write strobe signal

miWrAck[2PNR-

1:0]
I + clk • Write acknowledge signal

miWrData[2PNR*3

2-1:0]
O + clk • Write data signal

miWrMask[2PNR*

3-1:0]
O + clk • Write mask signal

miRdStrb[2PNR-

1:0]
O + clk • Read strobe signal

miRdAck[2PNR-

1:0]
I + clk • Read acknowledge signal

miRdData[2PNR*3

2-1:0]
I + clk • Read data signal

2.5. Memory Interface (Parameter Read Use)

Signal Name IO Pol Source Description

meReq O + clk • Request signal

meGnt I + clk • Grant signal

meAddr[31:0] O + clk • Address signal

meStrb O + clk • Read strobe signal

meAck I + clk • Read acknowledge signal

meFlush O + clk • Read flush signal

meData[63:0] I + clk • Read data signal

9

2.6. Register File Interface (Write Port X)

Signal Name IO Pol Source Description

rxWE[2PNR-1:0] O + clk • Write enable signal

rxWB[BKR-1:0] O + clk • Bank signal

rxWA[15:PNR] O + clk • Address signal

rxWD[2PNR*32-

1:0]
O + clk • Write data

rxWM[3:0] O + clk • Write mask

rxWS[3:0] O + clk • Register number (0-15)

2.7. Register File Interface (Write Port Y)

Signal Name IO Pol Source Description

ryWE[2PNR-1:0] O + clk • Write enable signal

ryWB[BKR-1:0] O + clk • Bank signal

ryWA[15:PNR] O + clk • Address signal

ryWD[2PNR*32-

1:0]
O + clk • Write data

ryWM[3:0] O + clk • Write mask

ryWS[3:0] O + clk • Register number (0-15)

2.8. Register File Interface (Read Port)

Signal Name IO Pol Source Description

rgRE[15:0] O + clk • Read enable signal each of register number

rgRB[16*BKR-1:0] O + clk • Bank signal each of register number

rgRA[(16*(16-

PNR)-1:0]
O + clk • Address signal each of register number

rgRD[2PNR*32-1:0] I + clk • Write data each of register number

2.9. Scalar Register Interface

Signal Name IO Pol Source Description

scWE[2PNR-1:0] O + clk • Write enable signal

10

scWA[SLR-1:0] O + clk • Address signal

scWD[31:0] O + clk • Write data

scRE[2PNR-1:0] O + clk • Read enable signal

scRA[(2PNR*SLR-

1:0]
O + clk • Address signal

scRD[2PNR*32-1:0] I + clk • Read data

scRS I + clk • Read strobe from another core access

scRSD I + clk • Read strobe from another core access (ahead)

2.10. Interrupt for pss

Signal Name IO Pol Source Description

iqWE O + clk • Interrupt pulse

iqWA[CLR-1:0] O + clk • Interrupt vectorl

iqWD O + clk • Interrupt value

2.11. Utillty

Signal Name IO Pol Source Description

rstReq O + clk • Internal reset signal to reset the external system

rstAck I + clk • Acknowledge of rstReq

reg_swap O + clk • Indicates 64bit word swap

fReq I + clk

• 1 clock early request against the miReq signal

• Use to generate gate signal (for memory

controller)

pReq O + clk

• 1 clock early request against the meReq signal

• Use to generate gate signal (for memory

controller)

gate[4:0] O + clk

• Gated clock control signal signifying condition

of each internal block(expansion case is gate)

• Equal to {cor, mad, mem, int, all}

gclk[4:0] I + clk • Gated clock(expansion case is gclk)

mclk I + clk • Gated clock(for internal sram)

clk I + clk • Clock

reset I + clk • Synchronous reset signal

11

reset_n I - clk • Asynchronous reset

3. Architecture and Operation Description

3.1. Notation

• This document uses the following notations and abbreviations for explanation.

Symbol Legend:

Symbol Description

.

A delimiter or register concatenation indicating

hierarchy

X.Y means X is the upper (higher) part, and Y is the

lower part.

:

A delimiter indicating the hierarchy of instructions

Int:tfr represents a transfer (tfr) instruction within the

Int instruction category.

[:]

Indicates a bit range

A[X:Y] represents data A with MSB at position X and

LSB at position Y.

Rb[n]

Represents the n-th 32-bit register in bank b of the

Vector Register (b = 0 to 2BKR - 1, n = 0 to 15)

(The b designation may be omitted in some cases)

Rb[n]@shift

Represents the n-th 32-bit register in bank b of the

Vector Register belonging to a logical processor

offset by shift

(The b designation may be omitted in some cases)

SR[n]
Represents the n-th 32-bit register of the Scalar

Register (n = 0 to 255)

12

CCsub

• A 4-bit condition code (N: Negative, Z: Zero, V:

Overflow, C: Carry)

The subscript sub indicates the associated

instruction.

(It may be omitted if the context is clear)

• The condition code from an Int instruction result

is CCInt

• The condition code from a Mad instruction

result is CCMadHyp 命令結果の CC は CCHyp

Flag
User flags, generated by condition codes (CC), by the

user directly, or via parameters

CCR
Represents the 8-bit Condition Code Register

A packed register containing both CC and Flags

TR Represents the 32-bit Context Register

PC Program Counter (in multiples of 16)

Cn

Represents a 32-bit constant in the Constant Register

(n = 0 to 7)

C0 is directly specified in normal instructions, while

C1 to C7 are preloaded using set instructions.

memn[address]

Access of n bytes to a byte address

n = 1, 2, 4 (defaults to 4-byte word access when

omitted)

memn (X,Y)

2D access of n bytes, assigning R[n] to both X and Y

n = 1, 2, 4 (defaults to 4-byte word access when

omitted)

13

Asub

Bsub

Xsub

• Input operands

The subscript sub indicates the associated

instruction.

(It may be omitted if the context is clear)

Int Instructions:

• AInt, BInt, XInt

Mem Instructions:

• AMem, BMem

Mad Instructions:

• AMad, BMad, XMad

Hyp Instructions:

• AHyp, BHyp

•

Xsub

Ysub

• Output operands; part of X is also used as an

input

The subscript sub indicates the associated

instruction.

(It may be omitted if the context is clear)

Int Instructions:

• XInt, YInt

Mem Instructions:

• YMem

Mad Instructions:

• XMad, YMad

Hyp Instructions:

• XHyp, YHyp

Modsub

Operand modifiers

The subscript sub indicates the associated operand

(A, B, or X)

(It may be omitted if the context is clear)

$sub

Operand modified by Modsub

The subscript sub indicates the associated operand

(A, B, X, or Y)

Setsub

Controls register updates for output operands

The subscript sub indicates the associated operand

(X or Y)

14

CX, CY XY coordinates assigned to the logical processor

@(CX,CY)

Indicates memory access using XY coordinates

R[n] = @(CX, CY) means transferring the data at XY

coordinates to register R[n]

Signed
Signed integer, represented in two's complement

format

Unsigned Unsigned integer

Command Instruction, 16 bytes

Cntl
Control instructions within a Command (e.g.,

branches and term)

Instr Arithmetic instructions within a Command

Infinity Infinity in IEEE 754 floating-point representation

NaN
Not a Number (NaN) in IEEE 754 floating-point

representation

Color coding for Registers and Commands:

 Register

 Cntl Instruction (Control Instruction)

 Int Instruction (Integer Instruction)

 Mem Instruction (Integer Instruction)

 Mad Instruction (Integer Instruction)

 Hyp Instruction (Integer Instruction)

 Constant

3.2. Architecture Overview

• As shown in Figure 1, the Kp is a processor in which N processor elements sequentially

process M sets of register files. Although there are N physical processors, it appears

logically as if there are M processors.

15

• Unlike conventional architectures, Kp executes a large number of operations from a single

instruction before moving on to the next. By expanding the cycle count between

instructions from 1 to several tens, it efficiently avoids penalties that would normally

occur—such as having to wait for the result of the previous instruction before continuing

computation.

• The processor consists of four pipelines, each of which can read data from a register file

and update the results.

16

Pipeline Description

Int

Integer Arithmetic Unit

Performs various 32-bit integer operations

Specified by the Int instruction in the Command

Mem

Memory Access Unit

Performs load/store operations

Specified by the Mem (Int) instruction in the Command

Mad

Floating-Point Arithmetic Unit

Performs single-precision addition, subtraction, and

multiplication

Specified by the Mad instruction in the Command

Hyp

Transcendental Function Unit

Performs single-precision division, trigonometric

functions, and hyperbolic functions

Specified by the Hyp instruction in the Command

・ The overall block structure is shown below. It is driven by the PSS and repeatedly performs

computations until the program ends. The architecture is designed so that increasing the

number of pipeline stages does not impact performance. The register file is implemented

using SRAM.

Figure 3: Block Diagram

17

A single logical processor can access R[n], CCR, and the shared registers SR, TR, and Cn.

• Vector Register Rb[n]: 16 32-bit registers per bank, with n banks (b depends on the

implementation)

• Condition Code Register CCR: A single 8-bit register indicating the result of an operation

• Scalar Register SR: 2SLR 32-bit registers

• Context Register TR: A single 32-bit register (internally managed per instance using the

iCID signal)

• Constant Register C: 8 32-bit registers (C0 is directly specified in the Command)

・ The Int, Mem, Mad, and Hyp instructions can each specify arbitrary registers. However, the

registers to be updated must generally be exclusive. If not exclusive, the results are not

guaranteed.

・ All operands can access R[n] of different logical processors with an offset that is a multiple

of 64. By applying a fixed offset to all register accesses, the number of usable registers can

be expanded through partitioning.

・ Operands can also access R[n] of different logical processors with an offset ranging from -

32 to +31, or in multiples of 64. This is used for overlapping calculations such as those

involving neighboring pixels.

・ Scalar processing allows integration of computations across logical processors. For example,

scalar values such as the sum or accumulation of designated registers from multiple logical

18

processors can be computed. This requires a set of multiple instructions.

・ The condition code (CC) attached to computation results consists of the following flags: N

for negative, Z for zero, V for overflow, and C for carry. Flags are generated by combining

these CC values. Flags can be accumulated up to 4 bits and are used in branches and

conditional register updates.

・ Branching is performed collectively after the specified processing unit (iDelta) of the

instruction has completed. All logical processors' user flags are collected and evaluated, and

if the condition is true, a jump to the specified instruction occurs. A delayed jump method is

used, meaning the next instruction (delay slot) is executed before jumping.

・ Conditional register updates evaluate the flag for each logical processor individually to

determine whether to perform an update. Unlike branching, this allows handling different

conditions for each logical processor.

3.3. Drive Interface (Initiator)

• The PSS sends XYZW indices to the Kp's Initiator (PX, PY, PZ, PW). The configuration for

PSS (e.g., processing units) is pre-arranged in memory. The PSS manages multiple

configurations (numbered N, depending on implementation) via time division and drives the

Kp after scheduling.

• The Initiator reads from memory based on the starting address of the instructions sent

by the PSS and sets up the pipelines. It continues processing either for the duration

indicated by iDelta from PSS, or by the amount specified in TR, until a termination

instruction appears. The amount of processing is determined by iAddr[2]: if '0', iDelta is

referenced; if '1', TR is used.

• Among the XY indices, the X index is assigned to each logical processor’s identifier.

Therefore, increasing the range of the X index is a key point for maximizing performance.

19

When needed, a scan conversion function can be used to generate new XY coordinates.

• The bank of the logical processor's Vector Register can be adjusted by setting the

Cntl.BankAdd register to '1', which causes iAddr[BKR+3:4] to be added.

• For the Program Counter, if the Cntl.BaseAdd register is '1' and iAddr[3] is also '1',

iAddr[31:4] is added (or iAddr[31:BKR+4] if Cntl.BankAdd is also '1').

3.4. Fragmentation Considerations

• In fragmented processing, alternating between different instruction sets generally does

not cause inconsistencies. However, there are some exceptions:

Case Description

Referencing past register results

If another task is inserted, the register

values may be overwritten. Consider

the following:

Use exclusive register access by

utilizing register banks and offsets

Save necessary data to memory after

each processing step

Processing very short fragments (iDelta

signal)

Performance per cycle will degrade.

The following considerations are

necessary:。

Making fragment length as long as

possible

• An instruction set is indivisible; other tasks cannot interrupt it. An instruction set refers

to the complete sequence of operations from the first to the last instruction—typically

corresponding to one image line (iDelta).

• When transitioning from the last instruction to the next line, an interrupt from another

process may occur. If you need to retain previous results (e.g., data in the register file),

configure the PSS to avoid interruption until all processing for one frame is complete, or

save register file contents to memory beforehand.

• To interrupt tasks at finer time intervals within a line, the instruction set must be broken

into smaller segments. This requires inserting a termination instruction periodically. Since

termination instructions occupy exclusive fields, they don’t significantly alter the

instruction set. However, if interrupted, register values may be corrupted—avoid reuse or

20

manage banks exclusively.

• Kp includes registers that count flags based on true/false conditions. There are 2CLR

such registers managed by the iCID[CLR-1:0] signal. If CLR is minimized to reduce

hardware size, even different iCID values from PSS may be treated as identical by Kp,

potentially causing incorrect behavior. As with registers, prevent interruption until all

processing is complete or avoid generating duplicate iCID[CLR-1:0] values.

• When referencing TR[iCID[CLR-1:0]] for workload, writes to this register must be tracked

as part of workload management.

• If the workload is less than 30 cycles × number of physical processors N (i.e., 2PNR),

NOPs are automatically inserted to preserve data dependency consistency. For example,

in 4-way parallel Kp image processing, widths below 120 degrade performance. Two

methods can be used to avoid this, and they can be combined.

Method Description

The data dependency check

interval is specified by

Command.Cntl

(default is 0)

Adjust Cntl:lat for each instruction

If the write register number is not used

between the current PC and the instruction

lat cycles before, no NOP is inserted

Increase the fragment size

For 2D or higher-dimensional

processing, expand the

processing range along the X

index and reduce it along the

Y index

Use the scan conversion function

For example, a 64×64 operation can be

processed as 256×16

3.5. Instruction Start and Termination

• Kp sequentially executes the program starting from the specified instruction address.

Once a termination code appears in the program, it completes the current instruction and

then enters standby mode.

• Until a termination instruction is encountered, the program counter increments

continuously while executing instructions.

3.6. Constant Setup

• The Constant Registers C1 to C7 and special parameters are preloaded using set

21

instructions. If they are not used, setting them is unnecessary.

• Since set instructions are not vector operations, they consume only the minimum number

of cycles.

• Part of C1 along with C2 to C4 is set using the Set0 instruction, and the remaining part

of C1 along with C5 to C7 is set using the Set1 instruction.

Note that C0 is specified directly in regular instructions.

3.7. Integer Arithmetic

• Integer arithmetic supports signed types for addition and subtraction, and unsigned types

are also supported for other operations. All operations have a throughput of one cycle.

• Only signed operations are supported for addition and subtraction. Carry can also be

included in calculations:

For multiplication (mul), the lower 32 bits of the result are used. Both signed and unsigned types

are supported:

Division (div) computes both quotient and remainder simultaneously. It also supports 32-bit left-

shifted dividends. Both signed and unsigned types are supported:

Ternary operations are supported. The condition is specified by any bit of the CCR:

Scalar registers can be indexed using any register value:

Arbitrary shift operations (in two’s complement format) are possible, with shift amount specified

by A. A positive shift shifts left, and a negative shift shifts right. The empty bits resulting from a

shift can be filled using one of the following modes, specified by operand X (0–3):

22

Y = rot(B) #X[1:0] = 0 Circular (rotate)

Y = rot(B) w/ carry #X[1:0] = 1 Fill with carry

Y = rot(B) w/ zero #X[1:0] = 2 Fill with 0

Y = rot(B) w/ lsb, msb #X[1:0] = 3 Fill with LSB (if positive) or MSB (if negative)

The number of logical 1s (i.e., the Hamming weight) in operand B returns a value from 0 to 32:

Boolean algebra operations are supported via bitwise binary functions. The function type is

specified using operand X (0–15):

Type Y[i]

0 0

1 ~A[i] & ~B[i]

2 A[i] & ~B[i]

3 ~B[i]

4 ~A[i] & B[i]

5 ~A[i]

6 A[i] ^ B[i]

7 ~A[i] | ~B[i]

8 A[i] & B[i]

9 A[i] == B[i]

10 A[i]

11 A[i] | ~B[i]

12 B[i]

13 ~A[i] | B[i]

14 A[i] | B[i]

15 1

Type conversion is supported. Conversions are available between float (single precision) and

integer types, as well as between float (single precision) and float (half precision).

Values that exceed the range of 32-bit integers are clamped.

Both signed and unsigned types are supported.

23

 f(B)

hf2f
From floating-point (half precision) to floating-point (single

precision)*

f2hf
From floating-point (single precision) to floating-point (half

precision)*

bf2f From floating-point (8-bit) to floating-point (single precision)*

f2bf From floating-point (single precision) to floating-point (8-bit)*

si2f
From signed integer to floating-point (single precision)

C2[30:23] - 0x7F is added to the exponent part of the result

us2f
From unsigned integer to floating-point (single precision)

C2[30:23] - 0x7F is added to the exponent part of the result

f2si

From floating-point (single precision) to signed integer

C2[30:23] - 0x7F is added to the exponent part for reference

Values greater than or equal to 0x7FFFFFFF are clamped to

0x7FFFFFFF

Values less than or equal to 0x80000000 are clamped to

0x80000000

NaN is converted to 0

f2ui

From floating-point (single precision) to signed integer

C2[30:23] - 0x7F is added to the exponent part for reference

Values greater than or equal to 0x7FFFFFFF are clamped to

0x7FFFFFFF

Values less than or equal to 0x80000000 are clamped to

0x80000000

NaN is converted to 0

*Lane designation is specified in the Mod field.

Special type conversions are supported, including exponent extraction from floating-point (single

precision) (f2log), conversion to integer and fractional parts (f2sif, f2usif), and normalization (f2ef).

Y = f(B) X = g(B)

24

 f(B)

f2ef

r when decomposing floating-point value B into r * m

r is a floating-point value representing a scaling factor that is a

power of 2ⁿ

The condition is 0.5 ≤ |m| < 2.0

f2flog

Convert the exponent part of a floating-point number to a

floating-point value

The operation is performed on the value obtained by subtracting

0x7F from the exponent in IEEE representation.

For example:

If the result is 0x00, then the output is 0x00000000 (0.0)

If the result is 0x01, then the output is 0x3F800000 (1.0)

If the result is 0xFF, then the output is 0xBF800000 (−1.0)

f2ilog Corresponding integer (0–255)

f2sif

Extract the integer part of a floating-point value and convert it to

a signed integer (up to 8-bit precision)

The exponent is adjusted by adding C[30:23] - 0x7F

f2uif The above, for unsigned integer

 g(B)

f2ef

m when decomposing a floating-point value B into r * m

m is a normalized floating-point value satisfying 0.5 ≤ |m| < 2.0

The condition is that r must be a power of 2ⁿ

f2flog

f2ilog

Convert to a floating-point number whose exponent part

becomes 0x7F

However, if the exponent is 0 or the value is NaN, the input value

is retained.

f2sif

f2uif

Extract the fractional part of a floating-point number and convert

it to a floating-point value

The exponent is adjusted by adding C[30:23] - 0x7F

3.8. Floating-Point Operations

• Floating-point operations support IEEE 754 single-precision format.

The following operations are available, some of which can be executed simultaneously.

All operations have a throughput of one cycle.

25

Depending on the operation result, NaN or Infinity may be generated.

No exception interrupts are triggered.

However, the overflow flag may change, and an interrupt can be asserted to the system if

necessary.

A + B / A -B

A

B
0 A Infinity NaN

0 0 A Infinity NaN

B B, -B A + B, A - B Infinity NaN

Infinity Infinity Infinity Infinity, NaN NaN

NaN NaN NaN NaN NaN

A * B

A

B
0 A Infinity NaN

0 0 0 NaN NaN

B 0 A * B Infinity NaN

Infinity NaN Infinity Infinity NaN

NaN NaN NaN NaN NaN

B / A

A

B
0 A Infinity NaN

0 NaN 0 0 NaN

B Infinity B / A 0 NaN

26

Infinity Infinity Infinity NaN NaN

NaN NaN NaN NaN NaN

A*sin(B), A*cos(B

A

B
0 A Infinity NaN

0 0 0, A NaN, Infinity NaN

B 0 A o B Infinity NaN

Infinity 0 NaN NaN NaN

NaN NaN NaN NaN NaN

*lefthand is sin(), righthand is cos()

A*sinh(B), A*cosh(B)

A

B
0 A Infinity NaN

0 0 0, A NaN, Infinity NaN

B 0 A o B Infinity NaN

Infinity NaN Infinity Infinity NaN

NaN NaN NaN NaN NaN

*lefthand is sinh(), righthand is cosh()

atan(B/A), atanh(B/A)

A

B
0 A Infinity NaN

0 0 A, 0 Infinity, 0(0.5) NaN

B B, 0.25 A o B Infinity, 0(0.5) NaN

Infinity Infinity,±0.25 Infinity,±0.25 NaN NaN

NaN NaN NaN NaN NaN

*lefthand is square root(), righthand is angle

*hyperbolic function: |B|>|A| -> NaN, |B|=|A| -> Infinity

*() is selected according to sign flag

 Type conversion between integer and floating-point is performed using the Command.Int:tfr

instruction.

Additionally, the Int:mem instruction includes functionality for coordinate conversion

(floating-point → integer).

27

➢ In Hyp instructions, angles used for trigonometric functions are expressed such that 1.0

corresponds to 2π radians.

The result of atan ranges from -0.5 to 0.5.

➢ For hyperbolic functions processed by Hyp instructions, accurate results for atanh

cannot be obtained unless the condition |A| ≥ |B| is met.

However, it is possible to determine whether the condition is met based on the result of

√(A² - B²):

If the result overflows, then |A| < |B|; otherwise, |A| ≥ |B|.

➢ For hyperbolic functions such as sinh and cosh used in Hyp instructions, due to algorithm

precision limitations, the absolute value of B should be less than 1.12.

➢ In Mad instructions, conversion from fixed-point (when Exp is '0') to floating-point is

performed automatically.

However, if the operand is specified as 1.0 (in the case of multiplication) or 0.0 (in the

case of addition), the other operand's value is directly passed through as the result.

Since the input and output remain unchanged, this feature can be used via the Mad

instruction to access integer values from another logical processor.

➢ Using the Hyp instruction, exponential functions can be computed as shown below.

However, for log(x), since the atanh condition |A| ≥ |B| limits the input range, adjustments

are required.

You need to manipulate Command.Exp to either zero out or extract the exponent in

order to bring the value within the allowable range.

3.9. Floating-Point Adjustment

• The Mad instruction allows up to four adjustment options to be applied simultaneously

with the result computation. However, only one of these options can be applied at a time.

• Exponent Bit Shift (Left or Right)

Refers to C2[30:23].

The offset is computed by subtracting 0x7F from the IEEE-format exponent.

If the result is positive (in two's complement format), the exponent is shifted left; if negative, it is

shifted right.

After shifting, 0x7F is added back to produce the new exponent.

28

• Exponent Offset

Refers to C2[30:23].

The offset is calculated by subtracting 0x7F from this value.

If C2[30:23] is 0, it is treated as a special case and the offset becomes zero.

• Rounding

Refers to C2[30:23].

Indicates the rounding unit.

For example:

• 0x7F indicates standard rounding

• 0x80 rounds to the nearest multiple of 2

• 0x7E rounds to the nearest multiple of 0.5

If C2[30:23] is 0, it is treated as a special case and interpreted as 0x7F.

方式 Description

Trunc Rounds toward zero

Round
Rounds to the nearest value

if exactly halfway, rounds to make the LSB of the mantissa 0)

Floor Rounds toward negative infinity

Ceil Rounds toward positive infinity

• Pass-Through Assignment

Normally, custom-defined denormalized values (i.e., fixed-point representations) are normalized

through computation.

Denormalized values may be generated when using random numbers or setting constants.

To avoid normalization, use an addition-type Mad instruction and set one operand to 0.0.

3.10. Operands

• The operands for Int, Mad, and Hyp instructions can each be selected independently.

The number of operands required depends on the instruction.

If there are two outputs writing to the same R[n], the result will be the logical OR of both

.

29

Type Instruction Input Output

Int

scalar, ham 1 1

tern 2 1

add, sub, mul, div, rot, bool, mem 2 2

Mad

mul, add, min, max, diff 2 1

mad 3 1

mul, div, sin, cos, sinh, cosh, atan,

atanh
2 2

・ Operands A and B can refer to R[n] of another logical processor using operand shift, as

described below.

The total shift amount is Offset0 + Offset1:

• Offset0 = k (k = -32 to 31), or Offset0 = 64k (k = 0 to 63)

• Offset1 = 64 (n = 0 to 63, m = selection index: 1, Y, Z, W)

・ Operand shift has restrictions: specifying different shift amounts for the same R[n] in a

single instruction is not supported (behavior is undefined):

R[x] = R[0] * R[0]@4 # Invalid: R[0] is not unique

R[x] = R[2]@-2 * R[2]@-2 # Valid: same register, same shift amount

・ When using high-granularity operand shifts (k = -32 to 31), writing to the same reference

register in the immediately following instruction is not allowed (result of the previous

instruction is not guaranteed). Insert NOPs if necessary.

・ When using register references with relative logical processor numbers that exceed the

defined endpoints, edge handling becomes active.

Edge Description

0

Default Mode

Values that exceed the endpoints are replaced with a fixed value.

if (X < 0 || X ≧ width) then default value(C2)

width represents the coordinate of the maximum endpoint + 1.

If width is 0, it is treated as infinite (same applies below).

1

Copy Mode

Values that exceed the endpoints are replaced with the register

value of the nearest endpoint.if (X < 0) then value[0]

if (X ≧ width) then value[width-1]

30

2

Ring Mode

Values that exceed the endpoints wrap around to the opposite

endpoint's register value.if (X < 0) then value[(X + width)%width]

if (X ≧ width) then value[(X – width)%width]

3 Reserved

• Operands can be modified using the modify field, which allows specification of register

modifications, constants, CCR, and relative positions of logical processors. These

modifications are selectable for each operand individually.

Note: The default setting (0) disables both operand reading and writing.

Available operand types include:

• Standard register access

• Negation and absolute value modifiers

• Constants C0–C7

• Operand constants from -127 to 127

• Random numbers

• CCR (Condition Code Register)

• SCR (register values selected by relative processor position)

• TR (Context Register)

• PC (Program Counter)

• Random numbers use the xorshift algorithm.

Each logical processor generates a different sequence.

The initial seed is set via the Seed Register, not by the Command itself.

Initialization is controlled through a Command instruction.

• There are restrictions when specifying operand Rb[n] from bank b.

You cannot access different banks using the same register number.

For example, the combination below is invalid, as it attempts to access register number 1

from both Bank 3 and Bank 4, resulting in undefined behavior:

Int Instruction: R[0] = R4[1] + R3[1]

3.11. Constants

• Cn represents utility constants defined using the Set instruction.

The usage varies depending on the instruction type.

Typically, they are configured as 8 freely usable constants, but for branch instructions or

31

memory access, specific parts of the constants function as control codes.

Cn Case Description

C1[31:0] Scan Conversion

Converts the PSS indices X, Y, Z, W into

unique X, Y coordinates for each logical

processor

C2[31:0]

Edge Handling Fixed

Value

Exponent Correction

Fixed value used outside the valid region

and exponent specification used in Mad

instruction rounding (only C2[31:24] is

referenced)

C3[15:0] Branch Target (Lower) Branch Target (Lower)

C3[31:16]
BranchTarget (Upper)

/ Count

Branch Target (Upper)

Or the maximum number of loop

iterations

C4[31:16] Flag Generation

Sets the bit that evaluates to true based

on one of the 16 possible combinations

of CC or Flag after computation

C5,C6,C7
MemoryAccess

(mem)

16-bit configuration for each of the X

and Y window sizes in 2D access

(used to perform edge handling)

Configure format-related settings

Configure the update amount for 2D

access

Configure the starting address and

access type

There are special parameters that cannot be referenced via registers.

These can only be defined using the Set instruction.

Name Case Description

Step Logical Processor Shift

Select the index using Step[7:6]

Multiply Step[5:0] by 64 to shift the

register number of the logical processor

to be used

Shrink
Limiter for

Scalarization

Configure the limit for 1/N scalarization

Specified as a power of 2; 0 means no

limit

32

Util utillity

Util[2:0] is added from the most

significant bits of the address during

memory access

Util[3] skips dummy operations during

loops

(for performance improvement; it does

not affect the result)

・ Operand constants can be used as immediate constants and specified when modifying

registers.

・ For Int and Mem instructions, the 8-bit register selection field is sign-extended to 32

bits:

R[x] = {{24{x[7]}}, x[7:0}} // {24{x[7]}} replicates bit x[7] 24 times

・ For Mad and Hyp instructions, the 8-bit register selection field is converted into a

single-precision floating-point value.

In this case, the MSB represents the sign, and the remaining bits are interpreted as an

integer.

3.12. Type Conversion

• When referencing operand constants or parameter constants, automatic type conversion

is performed depending on the instruction used.

For example, the operand constant 1 becomes 0x00000001 for an Int instruction and

0x3F800000 for a Mad instruction.

Note that constants like Cn are not subject to automatic type conversion.

• When selecting the upper or lower 16 bits from a 32-bit word register for use as an

operand, automatic type conversion and bit extension are also applied depending on the

instruction.

For example, the register value 0x0000BC00 when referencing the lower 16 bits becomes:

o 0xFFFFBC00 for an Int instruction (MSB is sign-extended)

o 0xBF800000 (−1.0) for a Mad instruction

• When operand R[n] types or word lengths differ, the following conversions are applied

33

automatically.

If this results in unintended conversions, bit manipulation may be required before or after

the operation.

Source Destination Description

R[n]

Operands for

Int and Mem

instructions

R[n]

-R[n] ~R[n] + 1 (two's complement)）

|R[n]| R[n][31] ? ~R[n]+1 : R[n]

#n n[7] ? {0xffffff, n[7:0]} : n[7:0]

C(n) C(n)

Rnd Rnd (32-bit random number)

CCR CCR, ~CCR

LocalX,Y,Z,W LocalX,Y,Z,W

iCID signal Logical channel number from PSS

iAddr signal Context address from PSS

iDelta signal Workload amount from PSS

ScanX,Y ScanX,Y

R[n][15:0] R[n][15] ? {0xffff, R[n][15:0]} : R[n][15:0]

R[n][31:16] R[n][31] ? {0xffff, R[n][31:16]} : R[n][31:16]

R[n][7:0] R[n][7] ? {0xffffff, R[n][7:0]} : R[n][7:0]

R[n][15:8] R[n][15] ? {0xffffff, R[n][15:8]} : R[n][15:8]

R[n][23:16] R[n][23] ? {0xffffff, R[n][23:16]} : R[n][23:16]

R[n][31:24] R[n][31] ? {0xffffff, R[n][31:24]} : R[n][31:24]

TR TR

SrialCount SerialCount[CID] (assigns internal counter)

TickCount TickCount (assigns internal clock counter)

PC PC

R[n]

Operands for

Mad and Hyp

instructions

R[n]

-R[n] {~R[n][31], R[n][30:0]}（単精度符号反転）

|R[n]| R[n][31] ? {~R[n][31], R[n][30:0]} : R[n]

#n n[7] ? –itof(n[6:0]) : itof(n[6:0])

C(n) C(n)

Rnd

Rnd[22:0] (fractional part only of single-

precision → range: 0 to 1.0, normalized

before computation)

34

CCR 0

iCID signal 0

iAddr signal 0

iDelta signal 0

LocalX,Y,Z,W itof(LocalX,Y,Z,W) (Unsigned)

ScanX,Y itof(ScanX,Y) (Unsigned)

R[n][15:0]
ftof(R[n][15:0]) (Half precision → Single

precision)

R[n][31:16]
ftof(R[n][31:16]) (Half precision → Single

precision)

R[n][7:0]
R[n][7:0]<<15(Single-precision fractional

part left-aligned → range: 0 to 1.0)

R[n][15:8]
R[n][15:8]<<15(Single-precision fractional

part left-aligned → range: 0 to 1.0)

R[n][23:16]
R[n][23:16]<<15(Single-precision fractional

part left-aligned → range: 0 to 1.0)

R[n][31:24]
R[n][31:24]<<15(Single-precision fractional

part left-aligned → range: 0 to 1.0)

TR 0

SrialCount 0

TickCount

PC 0

Results of Int

and Mem

instructions

R[n] Result

R[n][15:0] Result[15:0] (Upper bits are masked)

R[n][31:16] Result[15:0] (lower bits are masked)

SCR Result

TR Result

Int Result(Assigned to interrupt vector)

PC
Result (indicates that a Branch instruction is

attached)

Results of

Mad, Hyp

R[n] Result

R[n][15:0]
ftof(Result) (Upper bits are masked, single

precision → half precision)

R[n][31:16]
ftof(Result) (lower bits are masked, single

precision → half precision)

35

SCR Result

TR Result (Not recommended designation）

Int Result (Not recommended designation）

PC Result (Not recommended designation）

3.13. Scalarization

By utilizing Command.Opt, it is possible to perform scalarization of each logical processor's

registers. Scalarization requires the specification of one initialization instruction followed by a

sequence of three scalarization instructions. The positions of the initialization and scalarization

programs can be arbitrary, provided that their order is maintained.

Type Opt その他設定 備考

initialization One Example：R[y] = 0

Initialize only

one logical

processor (e.g.,

set to 0).

Scalarizatio

n

1/N

Set arbitrary operations using

Int or Mad instructions (e.g.,

use add for summation).

Configure both the read and

write register numbers to be

the same.

In binary operations, apply an

operand shift (+1) to one

operand.

Example：R[x] = R[x] +

R[x]@+1

The contents of

the relevant

register will be

temporarily

overwritten.

A limit can be

set using the

Shrink

parameter.

Unite

Write the result to a Scalar

Register.

One of the register read and

write numbers uses the

initialized register number

No operand shift is used

y≠x is the condition

例：R[y] = R[y] + R[x]

Result goes into

initialized

register

Not necessary if

the number of

logical

processors does

not exceed N

36

Unite

Write the result to a Scalar

Register.

Example：S[z] = R[y]

Specification of

writing to the

Scalar Register

cannot be

omitted.

After scalarization, the instruction should generally be terminated. Subsequent processing should

read the result stored in the Scalar Register using a different program.

Command.Edge must always be set to Default mode. Operand values accessed beyond boundaries

will be the constant C2. For example, if obtaining a sum using the Mad instruction, set C2 to 0.0;

for a product, set it to 1.0.TEL - Thèses en ligne

3.14. Branch Control

• Branches can be made to any Program Counter (PC) location. However, all logical

processors branch synchronously; they cannot have differing PC values.

• Branching employs a delayed jump mechanism: the branch instruction and the subsequent

instruction (the delay slot) are executed before the branch occurs. Do not place two

branch instructions consecutively; if a branch instruction occupies the delay slot, it will

be ignored.

• The jump destination is specified either by setting C3 at the time of issuing the branch

instruction or by writing directly to the PC. Note that writing to the PC must be executed

as a branch instruction to be effective. Specify the PC in the modify field of the write

operand.

• When a branch instruction is present, each logical processor generates a single judgment

result (Judge) based on its 4-bit Flag and the 16-bit C4[15:0]. C4[15:0] encompasses all

combinations of the Flag. For example, if the Flag is '0101' in binary, the fifth bit of C4[15:0]

is used as the result. All combination results can be described in C4[15:0]. This judgment

result is also utilized in the update control described later.

 Temporary = C4[15:0]

 Judge = Temporary[Flag]

The judgment result of each logical processor s determined by the evaluation expression defined

in Command's Cntl.Branch.

https://theses.hal.science/tel-01057079/file/VD2_WANG_WEIJIA_11072014.pdf?utm_source=chatgpt.com

37

Branch[1:0] Description

0 NOP

1 Always branching

2 Reserved

3 Reserved

4 Branching (AND) with all logic processor decision results true

5
Branch (OR) when one of the logic processor decision results is

true

6
Branch （NAND）when one of the logic processor decision results

is false

7 Branching (NOR) with all logic processor decision results false

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Branching (AND) with all logic processor decision results true

13
Branch (OR) when one of the logic processor decision results is

true

14
Branch （NAND）when one of the logic processor decision results

is false

15 Branching (NOR) with all logic processor decision results false

 If branching is based on a representative scalar value (i.e., the result of one logical processor's

computation) or always branches, it's recommended to set Command.Opt = 2 (One) to reduce

processing time.

 When using the loop function, specify the maximum number of loops in C3[31:16]. If the branch

condition is always true, it results in a simple loop count. Setting it to 0 creates an infinite loop;

however, after 65,536 iterations, a limiter prevents further branching. Setting the control register

Cntl.LoopFree to 1 disables this limiter. Loop count specification cannot be used in nesting unless

all C3[31:16] within the nest are 0. Alternatively, create a local loop variable in the logical processor

and nest based on that condition.

38

Even if the instruction in the delay slot is an end instruction (Instr:period), processing continues

if branching occurs. Otherwise, the instruction in the delay slot is executed, and processing ends.

Set Util[3] to skip operations when the branch condition is false. This setting does not change

the result but improves performance by skipping unnecessary logical processor blocks during slide

execution on the hardware.

Cannot be used for processing involving more than 2LNR logical processors.

Subroutine Jump Example

n Branch(1), n+100 → PC // Jump, Opt=2 (One)

n+1 PC+1 → R[y] // Delay Slot, save PC+1 to R[y], Opt=2

n+2 (main routine) // Return from main routine

n+100 (subroutine) // Subroutine start

n+101 (subroutine)

n+102 Branch(1), R[y] → PC // Return by assigning saved address to PC, Opt=2

n+103 (subroutine) // Delay Slot, subroutine end

3.15. Register Update Control

• The Set field in the Command determines whether to update registers and memory. By

utilizing this field, it is possible to change only the CCR without updating the register, or

vice versa.

• In addition to direct specification via the Command, control can also be achieved using

the Judge flag generated from the Flag and C4. In this case, control is performed using

the Deselect field in the Command.

Deselect

Field
Description

[0] Flag 制御

[1] R[n], CC 制御

39

Deselect Description

0 R[n] update always

1 R[n] update if Judge=0 (Judge = C4[Flag])

The two controls, Set and Deselect, can be combined. If conditions for both not updating and

updating overlap, the result is not updating.

 For Scalar Register access, it must be set to 0. Also, it cannot be used in scalarization

processing.

3.16. Special Control

• Special operations are performed by setting the Cntl.Act field in the command.

• When Cntl.Act[0] = 0, this configures edge‐handling for logical‐processor numbers in

operand shifts. It defines what kind of value is returned if the register number computed

by the shift falls outside the valid range:

Act[2:1] Description

0 If outside the range, return the default value C2.

1 If outside the range, return the value of the nearest effective

register number.

2 If outside the range, return the register number linked to the

other edge.

3 Reserved

When Cntl.Act[0] = 1, this defines various control actions:

Act[2:1] Description

0

Reset the random‐number seed based on the current register

value.

The random numbers generated by this instruction use the post‐

reset seed.

1
Reset the CCR to 0.

The CCR value used by this instruction is the pre‐reset value

40

2

Gather information beforehand to skip unnecessary logical‐

processor block processing, improving performance when a

mask is later applied (Act[2:1] = 3). Not needed for other branch

types. | | 3 | (Ver. 2 or later)

3

Mask execution of any logical processor whose specified Flag bit

is 1.

The bit to test is chosen in advance via a register setting, not via

a command‐line parameter.

3.17. CC and Flags

• CC and Flags are packed into the Condition Code Register (CCR) and updated after each

instruction completes.

• Each of the Int, Mem, Mad, and Hyp pipelines produces two results, X and Y, and each

result generates a 4-bit condition code (CCX and CCY), for a total of 8 bits. The FlagCC

field in the Command selects either CCX or CCY and stores it in the upper 4 bits of the

CCR:

FlagCC Description

0 CCX

1 CCY

• The Flags occupy the lower 4 bits of the CCR. They are newly generated from the current

4-bit CC (from the pipeline), the existing 4-bit Flag, and the 16-bit constant C4[31:16].

The new update bit FNew is selected by indexing into C4[31:16] with the CC value

• The new flag bit FNew is then combined with the old Flag bits according to the FlagOp

and FlagComb fields in the Command, producing the final 4-bit Flag that is written back

into the CCR. FlagComb specifies how to merge FNew (Fi) and the old Flag (Fo):

FlagComb Description

0 0

1 ~Fi & ~Fo

41

2 Fi & ~Fo

3 ~Fo

4 ~Fi & Fo

5 ~Fi

6 Fi ^ Fo

7 ~Fi | ~Fo

8 Fi & Fo

9 Fi = Fo

10 Fi

11 Fi | ~Fo

12 Fo

13 ~Fi | Fo

14 Fi | Fo

15 1

FlagOp=1: Fi= FNew, Fo=FLAG[0]

FlagOp=3: Fi= FLAG[2], Fo=FLAG[3]

• The CC bits themselves are not suppressed by the Set field, but they are affected by the

Mod field of a write operand. If the Mod field is disabled, CC will not update (though Flags

always will).

• To preserve the existing Flags (i.e., prevent any update), set:

FlagOp = 0

FlagComb = 12

• Per-instruction update sequence:

1． Generate new CC from the pipeline result.

2． Generate FNew from CC, FlagOp, and FlagComb.

3． Generate CCnew from old Flag, FlagRefer, and Deselect.

4． Write CCnew → CC field; write FNew → Flag field.

• Specific bits of the Flag can be used to mask execution on individual logical processors.

The bit to test is pre-configured via a register setting, and whether to apply the mask is

controlled by Cntl.Act[0]=1 (Version 2 and later).

• By configuring Cntl.Deselect, you can control per-instruction whether CC and Flag are

updated or preserved.

• By configuring Cntl.Act, you can clear the CC and Flag on a per-instruction basis.

• When the CCR is the target via a write’s Mod field, the lower 8 bits of the computed

result R[y] are written into the CCR.

42

• If the Set field for R[y] is not enabled, the existing CCR value is retained.

• If Cntl.Seed = 1, the clear operation takes precedence, but updates or preservation

governed by Deselect remain in effect.

• For flag-referencing operations, setting Cntl.IR = 1 allows the lower 4 bits of a specified

register to be used as an immediate value. The particular register is chosen via the

register-configuration settings.

43

3.18. Memory Access

• Memory accesses are performed by the Mem instruction or the Int:mem instruction. There

are two addressing modes:

1. 2-dimensional coordinate addressing

2. Direct address addressing

Both the coordinates and the address are specified in a register R[n].

• The following parameters apply to the 2-dimensional coordinate mode (Instr.Instr[3] = 0).

When using direct address mode, none of these Cn constants are used:

Parameter Source Description

Value C2[31:0] Default value to return when out of bounds

WidthX C5[15:0] Maximum X dimension + 1

WidthY C5[31:16] Maximum Y dimension + 1

Format C6[1:0] Memory format: select 8-bit, 16-bit, or 32-bit

Extension C6[3:2]
Sign-extension of read data (extension occurs if

value = 3)

Opt C6[4] Assigned to bit 0 of the base address

44

Buf C6[5] Assigned to bit 1 of the base address

Bound C6[7:6]
Access instruction outside the area set by

WidthX,Y.

Swap C6[15:8] Byte-swap

Stride C6[31:16] Address increment in X direction

Ser C7[3] Serial-addressing enable

Base C7[31:4] Base address

Type C7[1:0] Conversion from floating-point to integer

• 2-dimensional coordinates are provided directly in R[n]. The register may hold either an

integer or a floating-point value; the type of each half (Y in the high half, X in the low half)

is explicitly indicated by the Type field. See the next section for coordinate-modification

details.

Type Description

0 Treat as integer coordinates

1
Treat as floating-point coordinates.（Convert to integer type

during address calculation）

• Stride is the increment applied to the address on each access, minus one. This stride is

measured not in bytes but in units of the chosen word size (8-, 16-, or 32-bit).

• Edge Handling for out-of-range coordinates is selected by the Bound field (C[7:6]). For

2D accesses, the valid coordinate rectangle runs from (0, 0) up to (WidthX-1, WidthY-1).

The values of WidthX and WidthY are specified as (width − 1) and (height − 1),

respectively, in units of the chosen word size. Versions A and B do not support negative

indices.

45

Figure 1 Bound Operation

• If both WidthX and WidthY are 0, processing is performed without judgment of crossing

endpoints.

• The following are the parameters used in the method where the address is given directly

(Instr.Instr[3]=1).

Parameter Source Description

Value Value’0’ No bounds handling (always within range)

WidthX Value’0’ No bounds handling

WidthY Value’0’ No bounds handling

Format Instr.Instr[1:0]
Memory format

Select of 8bit, 16bit, 32bit

46

Extension

Instr.Wm[3:0]

< 6 ?

Instr.Wm[1:0] :

Value’0’

Sign-extension of read data (extension applied

when the field value equals 3).

Opt Instr.Op[0] Assigned to the 0th bit of the 0 base address

Buf Instr.Op[1] Assigned to the 0th bit of the 1 base address

Bound Value’0’ No bounds handling

Swap Value’0’ Fix 0

Stride Value’0’ No bounds handling

Ser Value’0’ Fix 0

Base Value’0’ Fix 0

Type Value’0’ Fix 0

• Direct Addressing Mode:

In this mode, the memory address is calculated as R[n] + R[m]. If the resulting address is

not aligned to the word size, it is automatically aligned. The access unit (word size) varies

depending on the instruction. Note that R[n] must be of integer type.

•

This operation rearranges the byte lanes within a 32-bit word arbitrarily. Byte swapping is

often used to handle differences in endianness between systems.

•

Memory is accessed in 64-bit units using Big Endian format. Each 64-bit unit automatically

packs data from adjacent physical processors. For example, during an 8-bit access, data

from eight physical processors are packed sequentially from the left.

•

Beyond simple addressing based on the position of logical processors, there exists a

mechanism for serial addressing based on conditions. This applies only to write operations.

Setting the Ser field to '1' enables serial addressing starting from 0, instead of using XY

coordinates. In this mode, accesses masked by Deselect[1] are skipped, allowing only valid

data to be written consecutively to memory.

•

When serial addressing is performed, a serial count value is recorded internally for each

iCID. This serial count remains valid until the next serial addressing operation. Subsequent

instructions can transfer this serial count value to another register for use.

47

3.19. External Bus (Aux) Access

• Access to the system bus is possible by setting Command.Cntl:Option = 1 (Aux). Other

parameters follow standard instruction formats.

• For write operations, assign the value to R[x] and the address to R[y]. The aux signal

facilitates access to the external bus.

• For read operations, assign the address to R[y]. The aux signal facilitates access to the

external bus, and the read data is written to the TR register.

• Similar to Command.Cntl:Option = 2 (One), only logical processor 0 executes the operation.

• Be aware that operations like resetting the processor via the system bus may lead to

undefined behavior and are not guaranteed to function correctly.

3.20. Flow Control

• The apparent latency can be calculated using the formula below. If the number of

operations (VolumeNum) is sufficiently large, the apparent latency will be less than or

equal to 1. For example, if the actual number of pipeline stages (PipeStageNum) is 32, the

degree of parallelism (ParallelNum) is 4, the number of operations (VolumeNum) is 256,

and the flow control number (FlowControlNum) is 1, then the latency will be 1/2.

• If the apparent latency is less than or equal to 1, no performance penalty occurs, and

throughput of 1 can be achieved. It is assumed that the number of operations

(VolumeNum) is sufficiently large when using Kp. If this number is small, a penalty will

occur, and the expected performance will not be achieved. By default, R[n] can be used

continuously as shown below:

• The following methods can be used to suppress penalties by adjusting the flow control

number (FlowControlNum):

・ Set the Lat field in the Control register to 3 (release up to 3).

・ Set the Lat field in Command.Cntl to FlowControlNum - 1 (static setting).

・ Use R[n] considering the latency (do not use the register R[n] between the writing

48

instruction and the current instruction based on the Lat setting).

・ If this usage is incorrect, the result is not guaranteed.

• For example, when FlowControlNum = 3, a register written in instruction n can be

referenced from instruction n + 3 onwards. Unlike in typical processors, registers cannot

be used at the exact timing corresponding to the latency, but only after the latency has

passed. In other words, it is not guaranteed when the register will be updated before the

latency period ends after instruction issuance. In the example below, R[y] written by

instruction 0 can be used from instruction 3 onward, but it might be overwritten by

instruction 1. Therefore, R[y] cannot be used in instructions 1–2.

4. Instruction Description

4.1. Overview

• A single instruction, referred to as a Command, consists of 16 bytes in total when it is a

normal instruction. This includes a control instruction (Cntl), an operation instruction, and

a constant (C0). In the case of a set instruction, it consists of Cn (n = 1–7). The meaning

of each field varies depending on the Ver register setting. The default is Ver2.

49

• When a single instruction is executed, the Program Counter (PC) advances by 16. The PC

starts from 0.

• The same instruction is issued to all logical processors. The only difference lies in the

operand constants, which are indexed to indicate the position of each logical processor.

• Operand specification is done through the A, B, X, and Y fields, which point to Rb[n]. The

lower 4 bits represent the register number n, while the upper bits represent the bank

number b. The number of banks supported depends on the implementation and can be 1,

2, 4, 8, or 16. Use bank numbers within this supported range. Please refer to the FPGA/LSI

implementation parameters for the maximum number of banks.

• Banks serve as double buffers used for data input/output from sources such as DMA,

operating in the background. In such cases, programs are written to use only a single bank.

If the program has exclusive access to the bank, the bank number b can be freely specified

just like the register number n.

• Operand inputs can also be modified using the Mod field. To avoid unnecessary circuit

activity, be aware that setting the Mod field to '0' means the operand will not be processed.

• The Mod field for read operations (Rm) is specified separately for each operand being read.

Rm[7:6] Description

0 NOP (interpreted when 0 is read)

1 Normal

2 Logical processor number offset (-32 to 31, valid for registers A

50

and B only)

3 Logical processor number offset (in multiples of 64)

Rm[5:4] Description

0-3 Reserved

Rm[3:0] Description

0 R[n]

1 -R[n]（Negative number）

2 |R[n]|（Absolute value）

3
Operand constant (register number converted to two's

complement)

4 C0-C7（Constant number is specified by the register number）

5
Parameter (parameter number is specified by the register

number)

6

Extends the 16-bit value from R[n][15:0]; for Int/Mem

instructions, sign extension is applied; for Mad/Hyp instructions,

extension is from half-precision to single-precision.

7

Extends the 16-bit value from R[n][31:16]; for Int/Mem

instructions, sign extension is applied; for Mad/Hyp instructions,

extension is from half-precision to single-precision.

8

Extends the 8-bit value from R[n][7:0]; for Int/Mem instructions,

sign extension is applied; for Mad/Hyp instructions, extension is

from half-precision to single-precision.

9

Extends the 8-bit value from R[n]15:8]; for Int/Mem instructions,

sign extension is applied; for Mad/Hyp instructions, extension is

from half-precision to single-precision.

10

Extends the 8-bit value from R[n][23:16]; for Int/Mem

instructions, sign extension is applied; for Mad/Hyp instructions,

extension is from half-precision to single-precision.

11

Extends the 8-bit value from R[n][31:24]; for Int/Mem

instructions, sign extension is applied; for Mad/Hyp instructions,

extension is from half-precision to single-precision.

12 TR (per CID)

13 SerialCount (per CID)

51

14 TickCount

15 PC

Rm[3:0] is invalid unless Rm[7:6] = '1'.

The specified number is automatically modulo-adjusted to stay within the valid range.

For Rm[3:0] = 8–11, half-precision representation uses a custom format where the sign

is 0, exponent is 0, and 0xFF represents 255/256.

• The parameters for Rm[3:0] = 5 are as follows.

レジスタ＃ Description

0

Random number

For Int/Mem instructions: 32-bit

For Mad/Hyp instructions: 24-bit (fixed-point representation with

Exp = 0)

1 Reserved

2 CCR（Lower 8 bits are valid）

3 Reserved

4 Index X (from PSS), equal to the logical processor number

5 Index Y(from PSS)

6 Index Z(from PSS)

7 Index W(from PSS)

8

Reserved
9

10

11

12
Coordinate X obtained by scan-converting index XYZW (from

PSS)

13
Coordinate Y obtained by scan-converting index XYZW (from

PSS)

14
Reserved

15

• The Mod field for write operations (Wm) is set commonly for all write operands within the

instruction.

52

Wm[7:6] Description

0 NOP (no write is performed)

1 Normal

2 Reserved

3 Logical processor number offset (multiple of 64)

Wm[3:0] Description

0 R[n]

In memory access instructions where the address is directly

specified, Wm[1:0] determines whether sign extension is applied

during read operations (sign extension is applied if the value is

3).

1

2

3

4

5

6 R[n]（Lower 16 bits）

7 R[n]（Upper 16 bits））

8
SCR(0–255 is specified by the logical OR of register numbers X

and Y)

9 Reserved

10
SCR(Specified by logical processor coordinate CX plus register

number X)

11
SCR(Specified by logical processor coordinate CX plus register

number Y)

12

TR

Since the output of an arbitrary logical processor is selected, it is

desirable that the output value be the same regardless of the

logical processor number.

(No issue when using serial count selection)

13

CCR (the lower 8 bits of Y are written); Cntl.Seed takes

precedence (if set to 1, it clears the register); control via

Cntl.Deselect is also valid.

14

Interrupt Generation

In addition to the iIrq signal, an arbitrary interrupt vector can be

asserted to the system (how it is used depends on the external

system).

53

15
PC (can only be assigned in conjunction with a Branch

instruction)

Wm[3:0] is invalid unless Wm[7:6] = '1'.

• Operand X functions as either a read or write operand depending on the instruction. Since

operand X shares the Mod field (Wm) with operand Y, conflicting settings are not

guaranteed to operate correctly.

4.2. Control Instructions (Cntl)

• Control instructions consist of termination, branching, and flag operations.

• The end of the instruction is indicated by the Period field.

Period Description

0 Execute the instruction and continue

1 Execute the instruction and terminate

• The Opt field is used to select the system configuration.

Opt Description

0 Normal order

1 External Bus Access Instruction

2

Executes only the first instruction regardless of the number of

operations

(e.g., for SCR initialization)

54

3

Executes only the first instruction for each logical processor

Used when the processing volume exceeds the number of logical

processors.

4

Performs computation using adjacent logical processors,

reducing the number of operations by half.

Any remainder is added to the total number of operations.

5

Performs scalarization processing

Calculations are carried out in a tournament-style manner using

adjacent logical processors, ultimately producing one result per

logical processor group.

6 Set Instruction 0

7 Set Instruction 1

• Branch defines the branching behavior. The branch is taken based on the condition set by

the combination of C4 Flags and Branch[2:0].

A delayed jump mechanism is used, meaning the instruction immediately following the

branch instruction is executed before the actual branch occurs.

Branch Description

0 NOP

1 Branch (constantly); if not writing to PC, refer to C3

2
Reserved

3

4 Branch (AND condition); if not writing to PC, refer to C3.

5 Branch (OR condition); if not writing to PC, refer to C3."

6 Branch (NAND condition); if not writing to PC, refer to C3.

7 Branch (NOR condition); if not writing to PC, refer to C3.

8

Reserved
9

10

11

12
Branch (AND condition); C3[15:0] is the jump destination, and

C3[31:16] is the loop count

13
Branch (OR condition); C3[15:0] is the jump destination, and

C3[31:16] is the loop count

55

14
Branch (NAND condition); C3[15:0] is the jump destination, and

C3[31:16] is the loop count

15
Branch (NOR condition); C3[15:0] is the jump destination, and

C3[31:16] is the loop count

• Step sets the offset value for the logical processor number. The offset value is calculated

as Step[5:0] × 64 × Index. The Index is selected from Step[7:6]. If the total offset value

exceeds the actual entity size, the modulo of that value is used as the effective offset.

Step[7:6] Description

0 1

1 Index Y (iIndex[31:16]) input from the PSS

2 Index Z (iIndex[47:32]) input from the PSS"

3 Index W (iIndex[63:48]) input from the PSS"

• Select the operation via the Type field.

Opt Description

0 Int instruction"

1 Mem instruction"

2 Mad instruction"

3 Hyp instruction"

When Op is 3 in the Int instruction, it is equivalent to the mem instruction.

• Deselect controls updates to R[n] and memory. For memory writes performed by the Int

instruction, it functions as a mask control.

Deselect[0] Description

0 Flag update always

1 Flag update if C4[Flag]=0

Deselect[1] Description

0 R[n] and CC update always

1 R[n] and CC update update if C4[Flag]=0

• The Edge field specifies how to handle R[n] values that exceed the valid range.

56

Edge Description

0
Default mode：

Values outside the valid range return C2

1
Copy mode：

Returns the R[n] value at the nearest endpoint.

2
Ring mode：

Returns the R[n] at the modulo position of Width + 1.

3 Reserved

• When the Seed field is set to '1', random number generation and CCR initialization are

performed. The random seeds specified in the control registers Seed0 to Seed3 are used.

Note that only the random number generator is initialized after a reset.

• When the IR (Immediate React) field is set to '1', operations related to Flag (Deselect and

Branch) can use the lower 4 bits of the computation result R[#IRVal] as an immediate

value. #IRVal is specified either via the Set instruction 1 or through register settings. If

the IRValEn in the Cntl register is '1', the value in the IRVal register is used; if IRValEn is

'0', the value set by the Set instruction is used.

• The Lat field specifies the tolerance for NOP insertion in coherence control. It applies to

instructions from the current one back by Lat steps. The default value '0' means that

instructions before the immediately preceding one are subject to the check.

• FlagOp, FlagCC, and FlagComb instruct the generation of a new Flag. FNew is newly

generated and integrated into a 4-bit Flag. To retain the existing Flag, set FlagOp = 0 and

FlagComb = 12.

FlagOp new Flag[3] new Flag[2] new Flag[1] new Flag[0]

0 - - -
FlagComb(Fla

g[0], FNew)

1
FlagComb(Fla

g[3], Flag[2])
Flag[1] Flag[0] FNew

• FNew is generated based on the following set of expressions.

FlagComb Description

0 0

57

1 ~Fi & ~Fo

2 Fi & ~Fo

3 ~Fo

4 ~Fi & Fo

5 ~Fi

6 Fi ^ Fo

7 ~Fi | ~Fo

8 Fi & Fo

9 Fi = Fo

10 Fi

11 Fi | ~Fo

12 Fo

13 ~Fi | Fo

14 Fi | Fo

15 1

• In the Set instruction, only the fields for setting the Period and the Constant Register are

valid.

• C1 to C7, in addition to being used as regular constants, are also defined as parameters

for special purposes.

• C1: Scan Conversion

Converts the XYZW indices input from the PSS into new X'Y' coordinates. Whether this

conversion is applied can be selected via operand selection. This is used when packing

indices X, Y, Z, W into 1D or conversely when expanding index X into 2D.

C*[2:0] U0 V0 U1 V1

0 X Y 0 0

1

0 2

3

58

4 X

5 Y

6 Z

7 W

C1*

[3]

C0*

[3]
X’ Y’

0 0 U0%216-MaskX + U1 * 2BoxX V0%216-MaskY + V1 * 2BoxY

0 1 U0 / 2 MaskX + U1 * 2 BoxX V0 / 2 MaskY + V1 * 2 BoxY

1 0 U0%2 16-MaskX + U1 / 2 BoxX V0%2 16-MaskY + V1 / 2 BoxY

1 1
U0 % 2 BoxX

+ U1 / 2 BoxY * 2 BoxX

V0 / 2 BoxX%2 16-MaskX

+ V1 / 2 BoxY%2 16-MaskY * 2 MaskX

• C2: Default Value

Sets the value to be assigned when an operand shift or out-of-range memory access

occurs. Additionally, C2[30:23] is used to configure the following parameters for the Mad

instruction: right or left shift of the exponent, offset to the exponent, and rounding.

• C3: Branch Parameters

The lower 16 bits specify the branch destination PC (absolute value), and the upper 16

bits specify the loop count.

• C4: Flag Selection

The lower 16 bits define the selection value used by control operations referencing Flags

(Deselect and Branch), while the upper 16 bits define the selection value used by CC for

Flag updates.

Control = FlagRefer[Flag]

FNew = FlagEval[CC]"

• C5, C6, C7: Memory Access Parameters (see section 3.11)

4.3. Integer Arithmetic Instructions (Int)

• The integer arithmetic instruction (Cntl:Type = 0) performs integer operations. It uses two

operands, A and B. The register selection value X is used as a configuration parameter.

59

Arithmetic operations (Op = 0):

Intr

(Op=0)
Y X

Y Flag X Flag

N Z V C N Z V C

0 add A+B

A++

Y[31] Y=0

new

Carry !

= Y[31]

new

Carry

X[31] X=0

0

A=-1

1 addc A+B+Carry

2 sub B-A

3 addc B-A-Carry

4 padd B

5 paddc B+Carry

6 psub B

7 psubc B-Carry

8 mul A*B

A 0

0

0
9 mulu* A*B

10 abs |B|

11 mov B

12 div
B/A B%A

A=0 0
13 divu*

14 ediv
(B<<32)/A (B<<32)%A |B|>|A|

15 edivu*

Bit/Byte operations (Op = 1):

Intr

(Op=1)
Y X

Y Flag X Flag

N Z V C N Z V C

10 tern
CCR[#X] ?

B : A

- Y[31] Y=0 0

0

- - - -

11 lut SR[B]

12

rot0 rotA(B)

new

carry

rot1
shiftA(B)
w/carry

rot2
shiftA(B)
w/zero*

rot3
shiftA(B)

w/LSB,MSB
**

13 ham ΣB[i] 0

60

(i=0-31)

14

*

bool0 0

bool1
~A[i] &

~B[i]

bool2 A[i] & ~B[i]

bool3 ~B[i]

bool4 ~A[i] & B[i]

bool5 ~A[i]

bool6 A[i] ^ B[i]

bool7 ~A[i] | ~B[i]

bool8 A[i] & B[i]

bool9 A[i] ~^ B[i]

bool10 A[i]

bool11 A[i] | ~B[i]

bool12 B[i]

bool13 ~A[i] | B[i]

bool14 A[i] | B[i]

bool15 1

*: zero stuff

**: if (A≧0) B[0] else B[31] stuff

***: rot number is assigned by #X[1:0]

****: bool number is assigned by #X[3:0]

Transfer operations (Op = 2):

Intr

(Op=2)
Y X

Y Flag X Flag

N Z V C N Z V C

0 hf2f
half float to

float(B)

A Y[31] Y=0 0 0 X[31] X=0 0 0

1 f2hf
float to half

float(B)

2 bf2f
8bit float to

float(B)

3 f2bf
float to 8bit

float(B)

4 si2f
signed int to

float(B)

61

5 ui2f
unsigned int

to float(B)

6 f2si

float to

signed int

(B)

7 f2ui

float to

unsigned int

(B)

11 f2ef**
float to

exp(B)

float to

fraction(B)

12 f2log float to log

float to

regulated

float

14 f2sif*
float to

signed int(B)

float to

signed

fraction(B)

15 f2uif*

float to

unsigned

int(B)

float to

unsigned

fraction(B)

*: Decomposes into an integer part and a fractional part based on the decimal point position

indicated by Exp (C2[30:23]).

**： Decomposes B into Magnify and Limited such that B = Magnify (2²²ⁿ) × Limited (0.5 ≦ x

< 2.0).

Memory operations (Op = 3):

Same as the memory instruction (Cntl:Type = 1).

4.4. Memory Instructions (Mem)

• Memory instructions (Cntl:Type = 1) perform memory access operations. They use three

operands: A, B, and X.

• Operands A and B, along with C5, C6, and C7, are referenced to generate an address and

62

perform memory access. There are two access modes: 2D access mode and direct access

mode. In the latter, most parameters can be specified through Command.Instr.

• 2D Access Mode

 Write2D accesses the address using operands A and B as coordinates and writes the

value of register X. If Deselect is set, masking is applied based on conditions.

Intr

(Op=Don’t

care)

mem(A,B)

Y Flag X Flag

N Z V C N Z V C

0
write2D

(A,B)

swap(X & 0xff)@Byte

- - - - - - - - swap(X & 0xffff)@Half

swap(X)@Word

 Read2D access uses operands A and B as coordinates to access the address and

writes the data to register Y.

Intr

(Op=3)
Y X

Y Flag X Flag

N Z V C N Z V C

4
read2D

(A,B)

swap(mem[B,A]

& 0xff)

0 Y[31] Y=0 0 0 0 1 0 0 swap(mem[B,A]

& 0xffff)

swap(mem[B,A])

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

swap()[31:24] swap()[23:16] swap()[15:8] swap()[7:0]

0 mem[31:24] mem[23:16] mem[15:8] mem[7:0]

1 mem[23:16] mem[15:8] mem[7:0] mem[31:24]

2 mem[15:8] mem[7:0] mem[31:24] mem[23:16]

3 mem[7:0] mem[31:24] mem[23:16] mem[15:8]

 Figure 13 shows the data type conversion table for Read2D and Write2D.

"Destination" refers to the transfer target, and "Source" refers to the transfer origin.

63

 By setting Ser (C7[3]) to '1', serial addressing is enabled. This is valid only for Write

operations, and its behavior is not guaranteed for Read. Operands related to

coordinates are ignored, and if Deselect[1] & ~FlagRefer[Flag] is true, the Write is

skipped and the address is incremented.

 The Type field (C7[1:0]) specifies the data type of the coordinates used for address

calculation. Type[0] corresponds to the X coordinate, and Type[1] to the Y

coordinate. Set '0' for integer type and '1' for floating-point type.

 When performing a Read, setting the Format[3:2] field to '3' enables the following sign

extension for integer types.

Format[1:0] Description

0

8bit Read

The MSB of the 8-bit data retrieved from memory is copied to

extend it to 32 bits

1

16bit Read

The MSB of the 16-bit data retrieved from memory is copied to

extend it to 32 bits.

2

24bit Read
Reserved

3

32bit Read
The 32-bit data retrieved from memory is used as-is.

 During memory access, the Base field specifies the memory address at coordinate

(0,0), and the Stride field specifies the increment amount when the Y coordinate is

updated (in units specified by Format[1:0]) minus 1.

64

• Direct Access Mode

 WriteN writes the value of register X to the memory address obtained by adding

operands A and B. If Deselect is set, masking is applied based on conditions. N

represents the data unit size.

Intr mem[A+B+Base]
Y Flag X Flag

N Z V C N Z V C

8
write8

(A,B)
swap(X & 0xff)@Byte - - - - - - - -

9
weite16

(A,B)
swap(X & 0xffff)@Half - - - - - - - -

10

11
weite

(A,B)
swap(X)@Word - - - - - - - -

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

swap()[31:24] swap()[23:16] swap()[15:8] swap()[7:0]

0 X[31:24] X[23:16] X[15:8] X[7:0]

1 X[7:0] X[31:24] X[23:16] X[15:8]

2 X[15:8] X[7:0] X[31:24] X[23:16]

3 X[23:16] X[15:8] X[7:0] X[31:24]

 ReadN writes the data from the memory address obtained by adding operands A and

B into register Y. N represents the data unit size. When Command.Op = 3, sign

extension is performed according to the word length.

Intr

(Op=3)
Y X

Y Flag X Flag

N Z V C N Z V C

12
read8

(A,B)

swap(signExtend8

(mem[B,A]

& 0xff))
0 Y[31] Y=0 0 0 0 1 0 0

13
read16

(A,B)

swap(signExtend1

6(mem[B,A]

& 0xffff))

65

14

15
read

(A,B)
swap(mem[B,A])

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

swap()[31:24] swap()[23:16] swap()[15:8] swap()[7:0]

0 X[31:24] X[23:16] X[15:8] X[7:0]

1 X[7:0] X[31:24] X[23:16] X[15:8]

2 X[15:8] X[7:0] X[31:24] X[23:16]

3 X[23:16] X[15:8] X[7:0] X[31:24]

• The Buf and Opt fields are passed to the memory subsystem. The behavior depends on

the memory subsystem specifications, but for example, a memory subsystem with the

following functionality is available.

Buf Opt Description

0 0 Cache access

0 1

Cache access

However, it transitions to the Valid state but not to the Modified

state (on write), and no write-back to external memory occurs

1 0 Buffer access (bypassing the cache)）

1 1 Reserved

4.5. Floating-Point Instruction (Mad)

• The floating-point instruction performs floating-point arithmetic operations. It uses three

operands: A, B, and X.

Intr Y X
Y Flag X Flag

N Z V C N Z V C

0 mul A*B 0 Y[31] Y=0 Y=NaN Y[22:0] Y[31] 1 0 0

66

1 add A+B Y=Inf

*

≠0

** 2 min min(A,B) A<B

3 max max(A,B) A≧B

4 mad*** A*B+X Y[31]

5 Reserved

6 Reserved

7 diff
(A<B)

? A : A-B
A<B

*: NaN/Inf is exp[7:0]=0xff

**: frac[22:0] is not zero (NaN C=1, Inf C=0)

***: Resut X is not affected by round/magnification operation

• The result of the operation can be subject to rounding, exponent shifting, and addition

processing. For the mad operation, these effects apply only to register Y and do not affect

register X.

 If Intr[3] = 1, rounding is performed according to the table below, using the decimal

point position indicated by Exp (C2[31:24]) as the reference.

Op Description

0

Trunc： mode

Discards the fractional part below the specified decimal point

position (e.g., 1.5 becomes 1).

1

Round mode：

Performs rounding to the nearest even number based on the

specified decimal point position.

In rounding to even, values exactly at 0.5 are rounded to the

nearest even number (e.g., 2.5 → 2, 3.5 → 4).

（For example, 0.5 becomes 0, and 1.5 becomes 2.）

2

Floor mode：

Discards toward the negative direction based on the specified

decimal point position.（For example, 1.5 becomes 1, and -1.5

becomes- 2）

3

Ceil mode：

Rounds up toward the positive direction based on the specified

decimal point position

67

(e.g., 1.5 becomes 2, -1.5 becomes -1)

 When Intr[3] = 0 and Op = 1, if the multiplicand is 1.0, one of the input values is

directly output; likewise, if the addend is 0.0, one of the input values is directly output.

 When Intr[3] = 0 and Op = 2, the exponent part is shifted to perform exponentiation

by n. Here, n = Exp (C2[31:24]), with Exp represented in two's complement form.

 When Intr[3] = 0 and Op = 3, the exponent part is modified through addition to

perform multiplication by 2ⁿ. Here, n = Exp (C2[31:24]) - 127. If EXP = 0, then n = 0.

• The result of the operation may produce NaN or Infinity. Since these values propagate,

care must be taken. They can be distinguished using the Overflow flag and Carry flag.

4.6. Hyperfunction Instruction (Hyp)

• The hyperfunction instruction performs special floating-point arithmetic operations. It

uses two operands: A and B.

Intr Y X
Y Flag X Flag

N Z V C N Z V C

0 tri A*sin(B) A*cos(B)

Y[31] Y=0

Y=NaN

Y=Inf

*

Y[22:0]

≠0

**

X[31] X=0

X=NaN

X=Inf

*

X[22:0]

≠0

**

1 hyp A*sinh(B) A*cosh(B)

2 mul A*B A

3 thru B A

4 atan tan-1(B/A) √(A2+B2)

5 atanh*** tanh-1(B/A) ±√(A2-B2)

6 div B/A A

7 thru B A

*: NaN/Inf is exp[7:0]=0xff

**: frac[22:0] is not zero (NaN C=1, Inf C=0)

***: if A is negative X is negative

68

• Unlike the Mad instruction, rounding, exponent shifting, or addition processing cannot be

applied to the result of the operation.

• The result of the operation may produce NaN or Infinity. Since these values propagate,

care must be taken. They can be distinguished using the Overflow flag and Carry flag.

• For trigonometric functions, the unit of angle is not in radians but is normalized such that

2π equals 1.0. Since the CORDIC algorithm is used, errors near the least significant bits

may occur depending on the operand values.

69

5. Control Register Description

5.1. Overview

• Control registers are accessed via the control bus. Unlike R[n], they are common settings

shared across processors. They include scalar registers.

• In the detailed register descriptions, the following symbols are used to indicate access

types:

R – Read Only (writes have no effect)

R/W – Read / Write

R/WC – Read / Write, Clear on Write

• Do not access reserved registers. Also, when writing to reserved fields, set them to '0'.

• Any 'x' in address or data fields indicates a “don’t care” value.

5.2. Definition

Address Register Name Description

0000_0000 Reset Reset Control

0000_0004 Clock Clock Control

0000_0018 Info Interrupt information

0000_001c IntEn Interrupt enable

0000_0010 Cntl Master control

0000_0014 IRVal IR value

0000_0018 - Reserved

0000_001c - Reserved

0000_0020 Seed0 Random Seed 0

0000_0024 Seed1 Random Seed 1

0000_0028 Seed2 Random Seed 2

0000_002c Seed3 Random Seed 3

0000_0030 - Reserved

0000_0034 - Reserved

0000_0038 - Reserved

0000_003c - Reserved

0000_0040 MonitorXY Active Index XY

70

0000_0044 MonitorZW Active Index ZW

0000_0048 MonitorPC Active Index PC

0000_004c - Reserved

0000_0050 - Reserved

0000_0054 - Reserved

0000_0058 - Reserved

0000_005c - Reserved

0000_0060 BreakXY Break Index XY

0000_0064 BreakZW Break Index ZW

0000_0068 BreakPC Break Target PC

0000_006c - Reserved

5.3. Details

5.3.1.1. Reset Register

Name Type Default Description

Reset R/W 0 Synchronous Reset

After setting to '1', the system enters an internal reset

state and then automatically clears it.

Unlike the reset_n signal, the contents of other registers

are retained.

5.3.1.2. Clock Register

Name Type Default Description

BSwap R/W 0 Configures byte swapping for input/output data in

memory instructions.

71

 For input, byte-level mapping is performed from input

data In[31:0] to internal data Pipe[31:0].

Be careful, as configurations other than one-to-one

mapping may result in unknown values or overlapping.

Value
BSwap[7:6] BSwap[5:4] BSwap[3:2] BSwap[1:0]

Pipe[31:24] Pipe[23:16] Pipe[15:8] Pipe[7:0]

0 In[31:24] In[23:16] In[15:8] In[7:0]

1 In[7:0] In[31:24] In[23:16] In[15:8]

2 In[15:8] In[7:0] In[31:24] In[23:16]

3 In[23:16] In[15:8] In[7:0] In[31:24]

For output, byte-level mapping is performed from

internal data Pipe[31:0] to output data Out[31:0].

Configurations other than one-to-one mapping may

result in unknown values or overlapping.

Value
BSwap[7:6] BSwap[5:4] BSwap[3:2] BSwap[1:0]

Out[31:24] Out[23:16] Out[15:8] Out[7:0]

0 Pipe[31:24] Pipe[23:16] Pipe[15:8] Pipe[7:0]

1 Pipe[23:16] Pipe[15:8] Pipe[7:0] Pipe[31:24]

2 Pipe[15:8] Pipe[7:0] Pipe[31:24] Pipe[23:16]

3 Pipe[7:0] Pipe[31:24] Pipe[23:16] Pipe[15:8]

WSwap R/W 0 Configures final word swapping with memory.

The specification is the same as the swap used in

instructions (see the 2D access method of memory

instructions).

For Write operations, this swap is applied after the swap

specified in the instruction.

For Read operations, this swap is applied before the

swap specified in the instruction.

GateOff R/W 0 Gated Clock Off Mode.

When set to '1', all bits of the gate signal are fixed to '1'.

72

5.3.1.3. Info Register

Name Type Default Description

Int R/WC 0 Indicates that an interrupt has occurred.

Cleared by writing '1'.

5.3.1.4. IntEn Register

Name Type Default Description

En R/W 0 Configures permission for interrupts to the system.

5.3.1.5. Cntl Register

Name Type Default Description

IRValEn R/W 0 When set to '1', the value of the IRVal register is used

as the immediate value for register specification.

LoopFree R/W 0 When set to '1', the maximum number of loop iterations

is unlimited;

when set to '0', the maximum number of loop iterations

is limited to 65,536.

Lat R/W 0 Sets the maximum latency minus one.

Values less than or equal to the configured value will

73

not be blocked.

5.3.1.6. IRVal Register

Name Type Default Description

IRVal R/W 0 Used for immediate value support.

If Cntl register's IRValEn is set to '1', this takes

precedence over the IRVal specified in the Set

instruction.

5.3.1.7. SeedX Register

Name Type Default Description

Seed R/WTable Reference Sets the seed for random number generation.

Four values together constitute a single random

seed.

Address Register Name Default (Decimal)

0000_0020 Seed0 123456789

0000_0024 Seed1 362436069

0000_0028 Seed2 521288629

0000_002c Seed3 88675123

5.3.1.8. MonitorXY Register

Name Type Default Description

X R 0 Indicates the currently active index X.

Y R 0 Indicates the currently active index Y

74

5.3.1.9. MonitorZW Register

Name Type Default Description

Z R 0 Indicates the currently active index Z

W R 0 Indicates the currently active index W

5.3.1.10. MonitorPC Register

Name Type Default Description

PC R 0 Indicates the currently active PC (Program Counter).

5.3.1.11. BreakXY Register

Name Type Default Description

X R/W 0 Specifies the break index X.

Execution will halt just before processing this index.

Setting it to '0' disables the break.

Y R/W 0 Specifies the break index Y.

It behaves the same as index X.

5.3.1.12. BreakZW Register

Name Type Default Description

Z R/W 0 Specifies the break index Z.

It behaves the same as index X.

75

W R/W 0 Specifies the break index W.

It behaves the same as index X.

5.3.1.13. BreakPC Register

76

6. Application Notes

6.1. Processing Volume

• There are two ways to specify the processing volume: either through PSS or by setting a

value in the TR register.

Both methods perform horizontal processing, where n logical processors operate in

parallel.

• For vertical processing, in which loops are controlled by program branching, the processing

volume is defined either as a register value or a constant.

6.2. Regarding Hyperbolic Instructions

• The built-in hyperbolic instructions use the CORDIC algorithm, which imposes limitations

on the input value range.

For forward functions such as sinh or cosh, the absolute value must be less than or equal

to 1.12.

For inverse functions such as atanh, the ratio B/A must have an absolute value less than

or equal to 0.807.

Since this limitation affects all operations using hyperbolic instructions, care must be

taken with any composed functions as well.

• The function sqrt(x) can be expressed as sqrt((x + 0.25)² – (x – 0.25)²), which can be

calculated using A = x + 0.25 and B = x – 0.25.

To satisfy the B/A ≤ 0.807 constraint above, x must be less than or equal to approximately

2.3.

By using the f2ef instruction, one can obtain r and m such that B = r * m with r = 2²ⁿ and

0.5 ≤ |m| < 2.0.

First use this instruction, then calculate sqrt(m) * sqrt(r) using the MAD instruction to

construct the sqrt(x) function across the full range.

Note that sqrt(r) = 2ⁿ, so the exponent shift option in the MAD instruction (Intr[3] = 0, Op

= 2) can be used.

• The function exp(x) = sinh(x) + cosh(x) is valid under the condition |x| < 1.12.

For values outside this range, decompose x into integer and fractional parts. Use a lookup

table for the integer part and compute only the fractional part using the function.

77

• When computing atanh, the result of the simultaneous operation ±√(A² - B²) reflects the

sign of A.

This is because A belongs to the negative quadrant of the hyperbola.

6.3. Image Processing Example

• Assumed Implementation Parameters

o Number of physical processors: 212

o Number of logical processors: 22

o

6.3.1. Mandelbrot Rendering

• Conditions

o Image size: 64×64 (mX = 64, mY = 64)

o Calculation coordinates: X = –2.0 to 2.0, Y = –2.0 to 2.0

(dX = 2.0, dY = dX × mY / mX)

o Maximum loop count: 64

o Using PSS’s ΔX = 1024 and ΔY = 4, the image is expanded in 2D with ΔX = 32

and ΔY = 32, then divided into 4 sections to render a 64×64 image

• PSS Settings

o 1D Processing (65):

▪ Configure the scalar register with a color palette read and (maximum loop

count + 1) entries

o 2D Processing (64×64):

▪ Rendering

• Scan Settings

o x’ = {y[0], x[4:0]} = ((y & 1) << 5) + (x & 0x1F)

o y’ = {y[1], x[9:5]} = (((y >> 1) & 1) << 5) + ((x >> 5) & 0x1F)

o C1 = 0x1EDC_5BD8

• Instructions

o Composed of two sets: one with 2 instructions and the other with 14 instructions

PC Cntl Instruction Comment

0 Set1 C5, C6, C7 Memory Parameters

16 Period Int SR[X]=@(X,Y) Color Palette

PC Cntl Instruction Comment

78

0 Set0 C1(Lower), C2, C3, C4
exp = 2, expand index X to 32×32

and use with Scan()

16 Set1 C1(Upper), C5, C6, C7 Memory Parameters

32 Hold, Seed Hyp R[0]=R[1]=0
Clearing is performed using the

two-operand output of Hyp.

64 Hold Int R[3]=-1 Count value (starts from -1)

96 Hold Mad R[4]=exp(Scan(X)*C0-1) Normalize coordinate X

128 Hold Mad R[5]=Scan(Y)*C0-1 Normalize coordinate Y

160 Hold,Des Mad R[2]=R[0]*R[0]+R4
Real part (initial) — Start of loop

192 Hold,Des Mad R[2]=-R[1]*R[1]+R[2] Real part (final)

224
F|=~V&~Z,De

s
Hyp =atanh(R[2], 2)

Overwrite the flag if the real part >

2

256 Hold,Des Maｄ R[1]=exp(R[0]R[1]+R[5]) Imaginary Part

288

F|=~V&~Z,De

s

F≠1 Loop 6

Hyp =atanh(R[1], 2)
Overwrite the flag if the real part >

2

320 Hold, Des Int R[0]=R[2], R[3]++ Delay Slot — End of Loop

352 Int R[3]=SR[R[3]] Color Palette Lookup

384 Period Mem Mem[Scan(X),Scan(Y)]=R[3] Write to Memory

Hold: Holds the flag and prevents it from changing

Seed: Clears the CCR

Des: Sets Deselect and saves R[n] and CCR

