

Revision 2.0

27 July 2025

Copyright 2012 ArchiTek All Rights Reserved

Confidential and Proprietary

frComp Specification
Frame Composer

2

1. Orverview 7

1.1. Introduction 7

1.2. Main Parameters 9

1.3. Implementation Parameters 10

1.4. Glossary 10

1.5. Others 11

2. Signal Lines 12

2.1. Control Bus Interface 12

2.2. PSS Interface 12

2.3. Memory Interface (Remapper Read Use) 13

2.4. Memory Interface (Pixel Cache Read Use) 13

2.5. Memory Interface (Blender Read Use) 14

2.6. Memory Interface (Blender Write Use) 14

2.7. Memory Interface (Steal Write Use) 15

2.8. Memory Interface (Histogram Write Use) 15

2.9. Memory Interface (Parameter Read Use) 16

2.10. Utility 16

3. Configuration and Operation 17

3.1. System Overview 17

3.2. Input and Output Data 21

3.3. Drive Interface (Initiator） 24

3.4. Notes on Fragmentation 26

3.5. Coordinate Generation (Polygon Shapes and Scanning） 28

3.6. Remapping （Remapper） 33

3.7. Matrix Transformation（Affine/Homography Transform） 35

3.8. Pixel Cache 37

3.9. Filter Data and Coefficient Selection 40

3.10. Preprocessing for Bayer Images 46

3.11. Filter 47

3.11.1. 2D/2F/SAD/SSD Filter（SrcIn） 49

3.11.2. None-linear（SrcIn） 54

3.11.3. Mask Filter（SrcIn） 57

3.11.4. Hamming Filter（SrcIn） 61

3.11.5. Extrema Filter（SrcIn） 62

3

3.11.6. Bitmap Filter（SrcIn） 64

3.11.7. Pattern Filter（SrcOut） 65

3.12. Envelope Processing 68

3.13. 3D CLUT（Color Space Conversion） 70

3.13.1. 1D Mode (Standard） 70

3.13.2. 1D Mode (Binary） 71

3.13.3. 2D Mode 71

3.13.4. 3D Mode 71

3.14. Pixel Processing (Extractor and Blender) 72

3.14.1. Extractor 73

3.14.2. Blender 74

3.15. Coordinate Extraction (Steal） 77

3.16. Histogram（Ver.BC） 78

3.17. Use of Blut 79

3.18. Address Masking 80

3.19. Input/Output Format 82

3.20. Internal Computation 87

3.21. Connection with pss 88

3.22. Performance 89

4. Register Description 90

4.1. Overview 90

4.2. Definition 90

4.3. Details 90

4.3.1.1. Reset Register 90

4.3.1.2. System Register 91

4.3.1.3. DitherHigh/Low Register 91

4.3.1.4. BayerMask0-3 Register 91

4.3.1.5. Utility Register 92

5. Command List Description 94

5.1. Overview 94

5.2. Definition 94

5.3. Details 96

5.3.1.1. MasterCntl Command 96

5.3.1.2. Vertex0-2 Command 104

5.3.1.3. PixelCntlB,G,R,A Command 105

4

5.3.1.4. PixelKeyCRC Command 112

5.3.1.5. PixelKeyMRC Command 114

5.3.1.6. PixelKeyLow Command 115

5.3.1.7. PixelKeyHigh Command 115

5.3.1.8. PixelOrg Command 116

5.3.1.9. PixelMod Command 118

5.3.1.10. PixelDefault Command 119

5.3.1.11. PixelConst Command 119

5.3.1.12. SrcInInfo Command 120

5.3.1.13. SrcInBase Command 123

5.3.1.14. SrcOutInfo Command 123

5.3.1.15. SrcOutBase Command 124

5.3.1.16. SrcMapInfo Command 124

5.3.1.17. SrcMapBase Command 128

5.3.1.18. SrcSize Command 128

5.3.1.19. SrcOffset Command 128

5.3.1.20. DstInInfo Command 130

5.3.1.21. DstInBase Command 131

5.3.1.22. DstOutInfo Command 131

5.3.1.23. DstOutBase Command 133

5.3.1.24. DstMapInfo Command 134

5.3.1.25. DstMapBase Command 135

5.3.1.26. DstSize Command 135

5.3.1.27. DstOffset Command 136

5.3.1.28. CICntl Command 137

5.3.1.29. COCntl Command 141

5.3.1.30. HistCntl0 Command 143

5.3.1.31. HistCntl1 Command 144

5.3.1.32. ClutCntl Command 145

5.3.1.33. BlutCntl Command 148

5.3.1.34. StealCntl Command 149

5.3.1.35. AffineCoef0-8 Command 151

5.3.1.36. FilterCntlIn/Out Command 151

5.3.1.37. FilterCntlOp Command 155

5.3.1.38. FilterCoef00 Command (Coefficient Filter Mode) 158

5.3.1.39. FilterCoef10-27 Command (Coefficient Filter Mode) 160

5

5.3.1.40. FilterTable Command (Mask Filter Mode) 161

5.3.1.41. FilterCenter Command (Mask Filter Mode) 161

5.3.1.42. FilterAround Command (Mask Filter Mode) 161

5.3.1.43. FilterReplace Command (Mask Filter Mode) 162

6. Application Notes 163

6.1. Overall Control 163

6.1.1. Processing Unit 163

6.1.2. Functional Orthogonality 164

6.1.3. Processing Symmetry 164

6.1.4. Polygon Rendering 165

6.1.5. Scan Modufications 168

6.2. Coordinate Operations 169

6.2.1. Mapping Data 169

6.2.2. Polar Coordinate Transformation 171

6.2.3. Spherical Transformation 172

6.2.4. Free-form Deformation 173

6.2.4.1. Abstracion 174

6.2.5. Affine Transformation 175

6.2.5.1. Parameter Settings 175

6.2.5.2. Translation 176

6.2.5.3. Mirroring (Flip) 176

6.2.5.4. Scaling 177

6.2.5.5. Rotation 177

6.3. Image Attributes 178

6.3.1. Input Format 178

6.3.2. Output Format 180

6.3.3. Width and Address 180

6.3.4. Attribute Conversion 181

6.4. Filter Settings 181

6.4.1. Filter Selection 181

6.4.1.1. 2D/2F Filter 182

6.4.1.2. Arbitrary Coefficients and Interpolation 183

6.4.1.3. Sobel Filter 184

6.4.1.4. Canny Filter 186

6.4.1.5. Bilateral Filter 188

6.4.1.6. Cross-Correlation 190

6

6.4.1.7. Thinning 191

6.4.1.8. Scratch Correction 194

6.4.1.9. Morphological Operations 196

6.4.1.10. Feature Point Extracion 197

6.5. Clut Confuguration 198

6.5.1. Effects of Transformation 198

6.5.2. 3D Mode 199

6.5.3. 2D Mode 201

6.5.4. 1D Mode 202

6.5.5. Input Value Range 202

6.5.6. Specific Color Extracion 203

6.5.7. Coordinate Transformation 205

6.6. Extractor Configuration 205

6.6.1. Binarization 205

6.7. Blender Configuration 208

6.7.1. Alpha Blending Configuration 208

6.7.2. Handling Pixel Values Beyond 8 Bits 209

7

1. Overview

1.1. Introduction

• Frame Composer (hereinafter referred to as frComp) is a compact image

processing engine that processes and transfers data from a Source image to a

Destination image. Most functions are orthogonal and operate independently,

allowing flexible combinations. Combined functions can be processed in a

single pass, delivering performance of up to 4 elements per cycle multiplied by

the number of combined functions.

• Supported pixel formats include 8-bit × 4-element (32bpp), 8-bit × 3-

element (24bpp), RGB565/YUYV (16bpp), and half-precision floating point

(Ver.C). The final accumulation stage supports 16-bit × 2-pixel or 32-bit ×

1-pixel operations. Internally, data is processed using signed 9-bit × 4-

element format, except for filters using half-precision floating point. In filtering

and other calculations, at least 4-bit fractional precision is maintained.

• For Bayer images, a 4×4 user-defined pattern enables arbitrary element

extraction and interpolation using filtering (Ver.C).

• Source and Destination coordinates are independently derived from a

reference coordinate, enabling flexible image transfers. Images are processed

in fragments, divided into multiple lines. There is no performance degradation

even when applying different processing contexts per fragment. By time-

division processing of multiple tasks, simultaneous multi-tasking can be

virtually achieved. The maximum coordinate size supported is 65536

(approximately 32× full HD width).

• By specifying polygon shapes, processing can be performed per triangle or

parallelogram region rather than per fragment (Ver.C), reducing the burden of

coordinate calculation and scanning on the host circuit.

• Coordinate mapping from Source to Destination is possible using mapping data

in memory. Useful for feature point processing, lens distortion correction, etc.

Mapping data can be compressed by 1/2ⁿ (n = 0–7) and reconstructed using

bi-linear interpolation, ensuring accuracy while saving data size.

• Affine and Homography transformations with floating-point precision using

3×3 matrices are supported. Operations include scaling, rotation, and

deformation. When the polygon shape is a triangle, texture mapping based on

memory references becomes possible. No size limitations are imposed.

Rotation matrices can also be generated from angle information.

• Equipped with a 5×5 full-color Pixel Cache and a 9×9 grayscale image

cache. Efficient memory access is performed even with irregular Source

8

coordinate movement. Arbitrary values can be assigned to out-of-boundary

data.

• Supports Point, Bi-cubic, Bi-linear, Non-linear filters, and arbitrary coefficient

2D filters up to 5×5. For grayscale, 9×9 2D filter processing is possible.

Some arbitrary coefficient filters can apply Bi-linear interpolation

simultaneously, and coefficients can incorporate table values based on the

difference between center and surrounding pixels (Bilateral filter).

• Using another image’s values as coefficients in a 5×5 2D filter enables

cross-correlation or auto-correlation. For filters larger than 5×5, multi-step

processing with accumulation and correction is required. Using mapping

functions, SAD (Sum of Absolute Difference) and SSD (Sum of Squared

Difference) up to 5×5 are also supported (Ver.C).

• Supports Non-linear filters for selecting pixel values based on max, min, or

median of specific elements. Median supports up to 3×3 kernel size, while

max/min support up to 9×9 (5×5 for Ver.A).

• Equipped with a Mask filter for non-linear processing. It uses the state of the

8 surrounding pixels and the center pixel as an index to reference a table,

enabling center pixel operations like dilation, erosion, thinning, and blending

within kernels.

• Supports filters that select maximum/minimum values from up to 8 layers of

3×3 kernels, useful for feature point extraction.

• Includes a distance filter for extracting the nearest true point from the center

in 1-bit Bitmap data.

• Allows binary pattern generation by comparing each pixel in a 9×9 kernel with

arbitrary values (e.g., kernel center, specific coordinates, constants). These

patterns can be evaluated using a downstream 3D Clut.

• Filter results can be evaluated under specified conditions to write Source

coordinates to memory. Coordinates are written serially to reduce data

volume.

• Enables arbitrary color space transformations or function conversions using

memory-based 3D Clut (3D Color Look-Up Table). Any 3 input elements can

be transformed into any 4 output elements, supporting RGB, YUV, HSV

formats and more. Applications include HOG preprocessing, gamma correction,

and pattern recognition (e.g., FAST).

• Combines pre- and post-filter pixel values to generate masks or perform

binarization, including adaptive binarization using pixel thresholds.

• Supports various binary operations (e.g., α blending, squared sum, division)

between Destination and Source images. Final results can undergo table-based

conversion.

• For pixel computation results, 8-bit elements can be concatenated to perform

accumulation at 16/24/32-bit precision, supporting high-precision grayscale

9

image processing including negative values. For grayscale, half-precision

floating point format is also supported (Ver.C).

• Histograms of the final image can be acquired per pixel element (Ver.B/C),

with support for cumulative updates. Only the necessary number of results can

be automatically written to memory.

1.2. Main Parameters

• Memory Bus

o Remapper Read: 32-bit × 3

o Cache Read: 32-bit × 13

o Blender Read: 32-bit × 1, Blender Write: 32-bit × 1

o Histogram Write: 32-bit × 1

o Steal Write: 32-bit × 1

o Command List Read: 64-bit × 1

• Throughput

o Up to 1 pixel / 4 elements / cycle, or 4 pixels / 1 element / cycle

• Pixel Formats

o 8-bit components (Grayscale, Bayer)

o 16-bit components (RGB565, ARGB1555, YUV422, half-precision

floating point format)

o 24-bit components (RGB888, YUV, etc.)

o 32-bit components (ARGB8888, AYUV, etc.)

• Mapping Data

o 16-bit integer format (two’s complement; fractional position specified

separately)

• Coordinate Matrix

o Single-precision floating point format (32-bit)

• Filter Coefficients

o Half-precision floating point format (16-bit)

• Envelope Coefficients

o Half-precision floating point format (16-bit)

• Histogram

o 32-bit (lower 24 bits valid) × 256 entries per element

• Extracted Coordinates

o 32-bit (upper bits: Y-coordinate, lower bits: X-coordinate) × variable

length

• Clock

o Undefined (depends on implementation process)

10

1.3. Implementation Parameters

• The following section explains the parameters used in the hardware

description.

Parameter

Name
Description Default Value

BLR

• Radix of burst length for Command List

reading

• Configures the burst unit for 64-bit memory

access

1（4 and under）

BSR

• Radix of burst length for data read/write

operations

• Configures the burst unit for 64-bit memory

access

2（4 and under）

BWLR

• Burst length of memory used for external

cache flush

• Configured by summing the word length (e.g.,

4 bytes per word); for a burst length of 4,

the total corresponds to Radix 4

4

1.4. Glossary

• The following section explains the terminology used in this specification.

Term Detail

Original
Refers to unprocessed data. The corresponding data

path is referred to as SecOrg.

Modify

Refers to data processed by filters or similar

operations. The corresponding data path is referred to

as SecMod.

Clut

Abbreviation for Color Look-up Table. A table

referenced using ARGB elements as keys. Includes 1D

conversion for transforming each element individually,

11

2D conversion for combinations of two elements, and

3D conversion for combinations of three elements.

Interpolation

Uses Linear conversion, which performs linear

interpolation based on the distance between two

discrete values, and Cubic conversion, which uses

four discrete values for interpolation.

Bi-linear
Interpolation

2D version of linear interpolation. Used in Remap,

Filter, and Clut.

Bi-cubi
Interpolation

2D version of cubic interpolation. Used in Filter.

Tri-linear
Interpolation

3D version of linear interpolation. Used in Clut.

Source

Represents the transfer source, with "Src" as the

modifier. There are three types: SrcIn, SrcOut, and

SrcMap.

Destination

Represents the transfer destination, with "Dst" as

the modifier. There are three types: DstIn, DstOut,

and DstMap. DstIn refers to the read path of the

destination. DstMap also serves as the configuration

for SrcOutMap, which is linked to SrcOut.

Float

Floating-point representation and its operations.

Implements functionality excluding IEEE 754 features

such as NaN, Inf, and rounding. Uses single precision

for Affine and half precision for Filter.

1.5. Others

• The ItalicBold font indicates a core.

• The Thoma font indicates a signal.

• The Command.Field font indicates a Command List name and field name. The

field name may be omitted in some cases.

12

2. Signal Lines

2.1. Control Bus Interface

Signal Name IO Pol Source Description

cntlReq I + clk
• Request signal

• Evaluate cntlGnt

cntlGnt O + clk • Grant signal

cntlRxw I + clk

• R/W signal

• Evaluate cntlReq & cntlGnt

0: Write

1: Read

cntlAddr[31:0] I + clk
• Address signal

• Evaluate cntlReq & cntlGnt

cntlWrAck O + clk • Writ acknowledge signal

cntlWrData[31:0] I + clk
• Write data signal

• Evaluate cntlWrAck

cntlRdAck O + clk • Read acknowledge signal

cntlRdData[31:0] O + clk
• Read data signal

• Sync cntlRdAck

cntlIrq O + clk
• Interrupt signal

• Level hold type(Fix'0')

2.2. PSS Interface

Signal Name IO Pol Source Description

iVld I + clk • Pipeline start valid signal

iStall O + clk • Pipeline start stall signal

iEnd[3:0] I + clk • Information of end of indexes

iAddr[31:0] I + clk

• Address to fetch context data

• Evaluate iVld & !iStall

• iAddr[5:4] indicate the parameter fetch

timing

➢ 0: At iIndex[63:0] = 0

➢ 1: At iIndex[47:0] = 0

➢ 2: At iIndex[31:0] = 0

➢ 3: At iIndex[15:0] = 0

13

iDelta[15:0] I + clk
• Transfer volume

• Evaluate iVld & !iStall

iIndex[64:0] I + clk
• Five coordinates to specify the processing

• Evaluate iVld & !iStall

oVld O + clk • Pipeline end valid signal

oStall I + clk • Pipeline end stall signal

2.3. Memory Interface (Remapper Read Use)

Signal Name IO Pol Source Description

mrnReq O + clk • Request signal

mrnGnt I + clk • Grant signal

mrnRxw I + clk
• R/W signal

• Write indicates cache flush

mrnBank[1:0] O + clk

• Bank signal

• Indicates a hint of buffer location for outside

cache

mrnAddr[31:0] O + clk

• Address signal

• LSB2bit indicates bank hit(usually subscript

n)

mrnRdStrb O + clk • Read strobe

mrnRdAck I + clk • Read acknowledge signal

mrnRdData[31:0] I + clk • Read data signal

Signal name subscript n is channel number from 0 to 2

2.4. Memory Interface (Pixel Cache Read Use)

Signal Name IO Pol Source Description

mcnReq O + clk • Request signal

mcnGnt I + clk • Grant signal

mcnRxw I + clk
• R/W signal

• Write indicates cache flush

mcnBank[2:0] O + clk

• Bank signal

• Indicates a hint of buffer location for outside

cache

mcnAddr[31:0] O + clk • Address signal

14

mcnRdStrb O + clk • Read strobe

mcnRdAck I + clk • Read acknowledge signal

mcnRdData[31:0] I + clk • Read data signal

Signal name subscript n is channel number from 0 to 12

2.5. Memory Interface (Blender Read Use)

Signal Name IO Pol Source Description

mbRdReq O + clk • Request signal

mbRdGnt I + clk • Grant signal

mbRdNew O + clk • Transaction start signal

mbRdEnd O + clk • Transaction end signal

mbRdType O + clk

• Type signal (Fixed '0')

• Indicates access direction (0:increment, 1:

decrement)

mbRdBE
[BSR-1:0]

O + clk

• Burst end signal

• Indicates terminal lsb address in burst

length

mbRdAddr[31:0] O + clk • Address signal

mbRdStrb O + clk • Read strobe

mbRdAck I + clk • Read acknowledge signal

mbRdData[31:0] I + clk • Read data signal

BSR is given as burst length radix parameter

2.6. Memory Interface (Blender Write Use)

Signal Name IO Pol Source Description

mbWrReq O + clk • Request signal

mbWrGnt I + clk • Grant signal

mbWrNew O + clk • Transaction start signal

mbWrEnd O + clk • Transaction end signal

mbWrType O + clk

• Type signal (Fixed '0')

• Indicates access direction (0:increment, 1:

decrement)

mbWrBE
[BSR-1:0]

O + clk
• Burst end signal

• Indicates terminal lsb address in burst

15

length

mbWrAddr[31:0] O + clk • Address signal

mbWrStrb O + clk • Write strobe

mbWrAck I + clk • Write acknowledge signal

mbWrData[31:0] O + clk • Write data signal

mbWrMask[3:0] O + clk
• Write mask signal

mtReq I + clk

• Request terminal signal

• Propagated mbWrReq signal to coherency

port

• If no bridge and using mc2, connect

mbWrReq signal directly

mtGnt I + clk • Grant terminal signal same as mtReq signal

BSR is given as burst length radix parameter

2.7. Memory Interface (Steal Write Use)

Signal Name IO Pol Source Description

msReq O + clk • Request signal

msGnt I + clk • Grant signal

msNew O + clk • Transaction start signal

msEnd O + clk • Transaction end signal

msBE
[BSR-1:0]

O + clk

• Burst end signal

• Indicates terminal lsb address in burst

length

msAddr[31:0] O + clk • Address signal

msStrb O + clk • Write strobe

msAck I + clk • Write acknowledge signal

msData[31:0] O + clk • Write data signal

msMask[3:0] O + clk • Write mask signal

BSR is given as burst length radix parameter

2.8. Memory Interface (Histogram Write Use)

Signal Name IO Pol Source Description

mhReq O + clk • Request signal

16

mhGnt I + clk • Grant signal

mhNew O + clk • Transaction start signal

mhEnd O + clk • Transaction end signal

mhBE
[BSR-1:0]

O + clk

• Burst end signal

• Indicates terminal lsb address in burst

length

mhAddr[31:0] O + clk • Address signal

mhStrb O + clk • Write strobe

mhAck I + clk • Write acknowledge signal

mhData[31:0] O + clk • Write data signal

mhMask[3:0] O + clk • Write mask signal

BSR is given as burst length radix parameter

2.9. Memory Interface (Parameter Read Use)

Signal Name IO Pol Source Description

meReq O + clk • Request signal

meGnt I + clk • Grant signal

meAddr[31:0] O + clk • Address signal

meStrb O + clk • Read strobe signal

meAck I + clk • Read acknowledge signal

meFlush O + clk • Read flush signal

meData[63:0] I + clk • Read data signal

2.10. Utility

Signal Name IO Pol Source Description

rstReq O + clk
• Internal reset signal to reset the external

system

rstAck I + clk • Acknowledge of rstReq

fReq I + clk

• 1 clock early request against the miReq

signal

• Use to generate gate signal (for mc2)

pReq O + clk

• 1 clock early request against the meReq

signal

• Use to generate gate signal (for mc2)

17

gate O + clk
• Gated clock control signal signifying

condition of each internal block

Gclk I + clk • Gated clock

Clk I + clk • Clock

Reset I + clk • Synchronous reset signal

3. Configuration and Operation

3.1. System Overview

• The Pipeline Slice Scheduler (hereinafter referred to as pss) retrieves the

necessary context from memory, fragments the information, generates

coordinate data, and activates frComp. Refer to the separate specification for

pss for further details.

• The connection interface only requires the input of coordinate and Command

List base addresses. Since it uses simple Valid/Stall control, the use of pss is

not mandatory. If pss is not used, it can be replaced with a custom circuit.

• frComp follows the pipeline structure shown in Figure 1, processing in the

order: Initiator, Polygon Generator, Remapper, Affine Transform, Pixel Cache,

Filter, Envelope, 3D Clut, Extractor, and Blender. This processing order cannot

be changed.

• Pixel data is first accumulated in a local cache (L1), enabling efficient

processing, especially for localized accesses. However, large filter sizes

(kernels) may result in high-load memory access. For improved performance,

an external unified cache system (L2) that integrates all memory access types

is effective.

• The engine generally processes four elements at the same coordinate

simultaneously. For convenience, elements are referred to as ARGB in the

following explanation, though the color space itself is not restricted. Element

roles differ only in the 3D Clut (e.g., only RGB elements are referenced in 3D

transformations); otherwise, element processing is equivalent. When handling

grayscale data only, up to four pixels can be processed simultaneously.

Additionally, binary Bitmap data can be handled for specific operations.

18

• As shown in Figure 1, processing is categorized into three domains:

Coordinate, Pixel, and Information.

• Coordinate Processing:

Performs transformations on reference coordinates, known as parametric coordinates

(a 4D coordinate system incremented from 0 up to a configured range). These

coordinates and transformation units are input externally. Processing generates new

(X, Y) coordinates, supplying them to both the Source and Destination systems. The

operations include:

• Generation of a polygon shape from a single transformation unit

• Recombination of 4D coordinates (X, Y, Z, W) into new coordinates

• Replacement with new coordinates fetched from memory

• Matrix transformation (applied to Source side only)

• Pixel Processing:

Refers to pixel acquisition from memory using coordinates, pixel processing, and

writing results back to memory. Each of the four elements is processed

independently. For input formats with fewer than 4 elements (e.g., 8bpp), a single

element is duplicated to form four. The processing includes:

• SrcIn supports up to 7 filter types; SrcOut supports 1 optional filter (only

SrcIn filters generate flags)

• Arbitrary elements from SrcIn and SrcOut can be combined with add or

multiply operations (separated into Origin and Modified)

• Independent color space conversion for Origin and Modified

• After selecting either Origin or Modified, Extractor performs pixel value

judgment, and Blender executes blending; Extractor may also generate flags

• If filter and Extractor flags are active, the corresponding coordinates are

written to memory

• Histogram data is written to memory

• Information Processing (Statistics):

Outputs coordinates of pixels meeting specific filter conditions and the results of

histogram aggregation to memory.

19

• Context Data I/O:

Some context data is exchanged, used for parameter sharing between instances of

the same engine or between different engines:

• Polygon shape length (used in 1D/2D context reference modes)

• Constants for the Envelope stage

• Constants for the Blender stage

20

H
o
m

o
g
ra

p
h
y

T
ra

n
sfo

rm
(A

ffin
e
)

P
ixe

lC
a

c
h

e
9

x9
 G

ra
y

m
e
m
[g
d (x,y

)]

→
d
a
ta

C
L

U
T

E
x
tra

c
to

r

B
le

n
d

e
r

B
L

U
T

d
a
ta
→

m
e
m
[g
d (x
,y
)]

R
e
m

a
p
p
e
r

D
e

s
tin

a
tio

n

fd (x
+
d
,y
+
d
)

C
o

o
rd

in
a

te
(座
標
系

)

P
ix

e
l(画

素
系

)

S
rc

O
rg

(O
rig

in
a
l)

P
ixe

lC
a

c
h

e
5

x5
 A

R
G

B

m
e
m
[g
s (x
,y
)]

→
d
a
ta

Envelope Envelope

(x
d ,y

d)

(x
s ,y

s)

(x
t ,y

t)

M
e

m
o

ry
D

e
s

tin
a
tio

n
 M

a
p

M
e

m
o

ry
S

o
u

rc
e

 M
a

p

M
e

m
o

ry
S

o
u

rc
e

 O
u

t

M
e

m
o

ry
S

o
u

rc
e

 In

M
e
m

o
ry

D
e
s

tin
a
tio

n

In
/O

u
t

S
rc

M
o

d

(M
o

d
ifie

d
)

Sel
Sel

SelSel

DstIn

DstOut

S
rc

O
u

t
P

a
th

S
rc

In
P

a
th

P
o

lyg
o

n

G
e

n
e

ra
to

r

S
c
a
n

C
h

a
n
g
e

Z
ig

z
a
g

S
w

a
p

(z
t ,w

t)

S
c
a
n

C
h

a
n
g
e

Z
ig

z
a
g

S
w

a
p

In
itia

to
r

In
fo

rm
a

tio
n

(情
報
系

)

M
e

m
o

ry
H

is
tg

ra
m

S
te

a
l

C
o

o
rd

in
a
te

C
o

n
te

x
t

F
ilte

r

2
D

/2
F

N
o
n
e
-lin

e
a
r

M
a
s
k

H
a
m

m
in

g

E
xtre

m
a

B
itm

a
p

F
ilte

r

P
a

tte
rn

(u
d ,v

d)

(u
s ,v

s)

R
e
m

a
p
p
e
r

S
o

u
rc

e

fd (x
+
d
,y
+
d
)

S
rc

O
rg

S
rc

M
o

d

StealHist

21

3.2. Input and Output Data

• Multiple input and output data types are handled. Each can be individually

enabled or disabled. Data of the same type can generally be reused.

Classification I/O Description

Context

(In)
Input

⚫ At the beginning of the fragmentation

process, context data is retrieved and

later restored.

⚫ The size is 32 bytes.

Context

(Out)
Output

⚫ At the end of the fragmentation

process, context data is saved and

backed up.

⚫ The size is 32 bytes.

Map

(Source)
Input

⚫ Mapping data used for the input frame

⚫ Referenced based on the

corresponding parametric coordinates

⚫ The size is proportional to the frame

dimensions (reduction ratio is

specified in the Command List)

Map

(Destination)
Input

⚫ Mapping data used for the output

frame

⚫ Referenced based on the

corresponding parametric coordinates

⚫ The size is proportional to the frame

dimensions (reduction ratio is

specified in the Command List)

Map

(Steal)
Output

⚫ Mapping data that outputs the

corresponding coordinates based on

per-pixel evaluation

⚫ Written based on the address

specified in the Command List

⚫ Size is variable

⚫ Supports 1D access only

22

Frame Buffer

(Source In)
Input

⚫ Input frame (Primary)

⚫ Referenced based on either the

parametric coordinates or

coordinates transformed via Map

(Source)

⚫ Size is specified in the Command List

⚫ Normally accessed in 2D, but

serialized 1D access is also supported

Frame Buffer

(Source Out)
Input

⚫ Input frame (Secondary)

⚫ Referenced based on either the

parametric coordinates or

coordinates transformed via Map

(Destination)

⚫ Size is specified in the Command List

⚫ Normally accessed in 2D, but

serialized 1D access is also supported

Frame Buffer

(Destination In)
Input

⚫ Target frame input (for modification)

⚫ Referenced based on either the

parametric coordinates or

coordinates transformed via Map

(Destination)

⚫ Size is specified in the Command List

⚫ Normally accessed in 2D, but

serialized 1D access is also supported

Frame Buffer

(Destination Out)
Output

⚫ Target frame output

⚫ Written based on either the

parametric coordinates or

coordinates transformed via Map

(Destination)

⚫ Size is specified in the Command List

⚫ Normally accessed in 2D, but

serialized 1D access is also supported

Color Lookup

Table
Input

⚫ Color conversion table

⚫ Referenced based on the address

specified in the Command List

⚫ Size is 16 KBytes

⚫ Supports selection of 1D, 2D, 3D, or

Binary formats

23

Blend Lookup

Table
Input

⚫ Common color conversion table for all

color components

⚫ Referenced based on the address

specified in the Command List

⚫ Size is 256 bytes

⚫ Used for per-element pixel

conversion and as auxiliary data for

filter parameters

Histogram Output

⚫ Histogram data

⚫ The frame can be divided into blocks,

allowing multiple outputs

⚫ Maximum size per unit is 256 × 4 ×

4 bytes (4 KBytes)

Figure 1 Inputs and Outputs

 The Source In (SrcIn) and Source Out (SrcOut) systems in the frame buffer are

used to process input images.

In frComp, SrcIn serves as the main input path, while SrcOut provides complementary

processing capabilities.

Extended SrcIn functions and special operations that cannot be handled by SrcIn

Context

32bit

x 16 (max)

Constant

Vertex

Affine Coefficient

Filter Coefficient

20 CICntl

14 SrcMapInfo

15 SrcMapBase

1c DstMapInfo

1d DstMapBase

Map

32bit

1D/2D

(X00,Y00) (X01,Y01) - (X0n,Y0n)

(X10,Y10) (X11,Y11) - (X1n,Y1n)

~

(Xm0,Ym0) (Xm1,Ym1) - (Xmn,Ymn)

Map

32bit

1D/2D

(X00,Y00) (X01,Y01) - (X0n,Y0n)

(X10,Y10) (X11,Y11) - (X1n,Y1n)

~

(Xm0,Ym0) (Xm1,Ym1) - (Xmn,Ymn)

Frame

8/16/24/32bit

1D/2D

Pixel00 Pixel01 - Pixel0n

Pixel10 Pixel11 - Pixel1n

~

Pixelm0 Pixelm1 - Pixelmn

10 SrcInInfo

11 SrcInBase

Frame

8/16/24/32bit

1D/2D

Pixel00 Pixel01 - Pixel0n

Pixel10 Pixel11 - Pixel1n

~

Pixelm0 Pixelm1 - Pixelmn

12 SrcOutInfo

13 SrcOutBase

Frame

8/16/24/32bit

1D/2D

Pixel00 Pixel01 - Pixel0n

Pixel10 Pixel11 - Pixel1n

~

Pixelm0 Pixelm1 - Pixelmn

18 DstInInfo

19 DstInBase

24 ClutCntl

25 BlutCntl

Table

24/32bit

1D/2D/3D

Pixel0 Pixel1 - Pixeln

Table

8bit x 256

1D

Pixel0 Pixel1 - Pixeln

21 COCntl

1a DstIOutnfo

1b DstOutBase

26 StealCntl1

22 HistCntl0

23 HistCntl1

Context

32bit

x 4

Constant

Map

32bit

1D

(X0,Y0) (X1,Y1) - (Xn,Yn)

Frame

8/16/24/32bit

1D/2D

Pixel00 Pixel01 - Pixel0n

Pixel10 Pixel11 - Pixel1n

~

Pixelm0 Pixelm1 - Pixelmn

Histgram

32bit x n x 4

Pixel00 Pixel01 - Pixel0n

Pixel10 Pixel11 - Pixel1n

Pixel20 Pixel21 - Pixel2n

Pixel30 Pixel31 - Pixel3n

24

alone can also be executed.

Some of the functions supported by SrcOut include:

 Extended kernels for 2D filters:

Uses four ARGB elements to process 7×7 and 9×9 kernels. Applicable to grayscale

images only.

 Pattern filter:

Evaluates the relationship between the center pixel and surrounding pixels using

kernels up to 9×9 in size.

 Hamming filter:

Calculates Hamming distance between two binary images. Input images are provided

through both SrcIn and SrcOut.

3.3. Drive Interface (Initiator)

• The pss scans the parametric coordinates—used as reference indices for

positioning—along the X-axis and sends them to the Initiator of frComp.

Settings for the pss (such as image information and processing units) must be

preloaded into memory.

pss manages multiple configurations—N instances (depending on

implementation)—using time-division control, and drives frComp according to

the scheduling.

Memory

CPU

pss

frComp

Task (0-0)
Kick

Size, X, Y

Kick

Image

Task 1

0-0

Task (1-0)
Kick

Size, X, Y

t

Task (0-1)
Kick

Size, X, Y

Image

Task 0

0-0 0-1

Context

Task 0

Context

Task 1

25

• The Initiator reads the Command List from memory based on the image

information provided by pss and sets up the pipeline accordingly.

The parameters extracted from the Command List are managed using triple-

buffer control, so performance degradation does not occur unless the

specified processing units are extremely short. Even in such cases, if the same

context continues across units, chained processing is applied, maintaining

performance.

• The context (handover information) required for fragmentation is exchanged

via memory.

Context is applicable only to a limited set of functions and holds 8 words (32

bytes) of information.

• If pss is not used, the basic method to drive frComp is as follows.

It operates on a line-by-line basis.

While this appears similar to rectangular rendering in polygon generation

(described later), the key difference is that different tasks can be inserted

between lines.

o Use a counter to increment Y-direction values from 0 to (height − 1).

Assert the iVld signal when active; if iStall is ‘0’, increment the

counter.

o Assert the starting address of the 256-byte Command List on the

iAddr signal.

o Assert (width − 1) in the X-direction on the iDelta signal.

o Assert the counter value to iIndex[31:16]; all other bits in iIndex are set

to ‘0’.

• iAddr[5:4] specifies the timing for parameter reset.

The actual parameter address is determined by iAddr[31:6], aligned to 64-byte

units.

Forcing a parameter reset—even when parameters remain unchanged—may

cause performance degradation due to mandatory reloading and setup.

iAddr[5:4] Description

0
Parameters are loaded when X = Y = Z =

W = 0.

26

1
Parameters are loaded when X = Y = Z =

0.

2 Parameters are loaded when X = Y = 0.

3 Parameters are loaded when X = 0.

3.4. Notes on Fragmentation

• In the fragmentation of processing, alternating between different parameter

sets generally does not cause inconsistencies.

However, additional configuration may be required if intermediate results

(context) need to be carried over.

• Context is passed via memory. In principle, it is sufficient to specify the

memory address.

Groups that require context can be designated arbitrarily.

The content of the context starting from the specified address is as follows:

Address Description

+0

Constant Group (Input/Output)

Used for processing with a specified

length, such as a 32-bit one-dimensional

length or a pair of 16-bit two-dimensional

lengths.

+4

Constant Group (Input/Output)

The input is optional and may be

referenced by Envelope or Blender.

The output represents the accumulated

value of a specific pixel element.

+8

Constant Group (Input/Output)

The input is optional and may be

referenced by Envelope or Blender.

The output represents the minimum

value of a specific pixel element.

+c

Constant Group (Input/Output)

The input is optional and may be

referenced by Envelope or Blender.

The output represents the maximum

value of a specific pixel element.

27

+10 ~ +18
Vertex Group (Input Only)

Replaces Vertex0 to Vertex2.

+1c ~ +3c
Affine Group (Input Only)

Replaces AffineCoef0 to AffineCoef8.

+40 ~ +44 Reserved

+48 ~ +7c
Filter Group (Input Only)

Replaces FilterCoef0 to FilterCoef13.

 Context is not read or written unless explicitly configured in the Command List.

For operations that utilize context—such as coordinate generation with context

reference (1D/2D operations), Envelope, and Blender constants—you must ensure

context is properly read.

 The following outlines features that require special attention during fragmentation,

along with corresponding handling methods:

Function Description

3D Clut

・The referenced table is reloaded for

each Command List (however, reloading

is skipped if the Command Lists are

consecutive and the number of table

references is two or fewer).

・Do not make the fragmentation length

excessively short (e.g., less than 1K

words), to ensure that table reload time

is less than the fragment processing

time, avoiding performance degradation.

・Alternatively, limit table references

across the entire system to two sets or

fewer.

Envelope

/Blender

Some constants reference context data

・Enable the context feature as needed.

Steal
Performs serial addressing

・Enable the context feature as needed.

28

Histogram

Statistical data is written to memory

・Enable the histogram feature

・Avoid excessively short fragmentation

lengths (e.g., less than 1K words) to

prevent performance degradation

3.5. Coordinate Generation (Polygon Shapes and Scanning)

• When a shape other than Normal is specified, the engine uses vertices defined

in the Command List instead of parametric coordinates, and processes the

shape formed by connecting those vertices.

This type of processing is executed in a single launch without fragmentation.

• When using pss, the process operates per launch unit. By setting the

fragmentation unit to 1, processing is triggered each time the lowest index

parametric coordinate X increments by 1.

This is particularly useful for operations like SAD/SSD search sequences.

• There are four supported shape types, including Normal.

The fragmentation unit is defined by the shape, and no other processing can

be inserted into frComp until the current shape’s processing is complete.

In some cases, iDelta is used as a Size parameter.

Figure 2 Polygon Drawing

For the Normal shape, only the iIndex signal (representing parametric coordinates)

and the iDelta signal (representing size) are used.

Normal Rectangle Triangle

(X,Y)
Size

(Xmin,Ymin)

(Xmin,Ymax)

(Xmax,Ymin)

(Xmax,Ymax)

(X0,Y0)

(X1,Y1)

(X2,Y2)

(0,0)
X0+Y0*65536

Line

29

For all other shapes, only the coordinates specified in the Command List are used.

The order in which coordinates are specified does not matter.

Regardless of shape, processing is always scanned from smaller to larger values in

the Y direction, and from left to right in the X direction.

Shape Description

Normal
Specifies the parametric coordinates and

size using the iIndex and iDelta signals.

Line

Scanning starts from (0,0) for a 32-bit

length specified in the first vertex.

Assign the upper 16 bits to Y and the

lower 16 bits to X.

Rectangle

Scans a rectangle defined by the

minimum XY and maximum XY values of

two vertices, using them as diagonal

corners. Scanning proceeds from the

smaller Y-axis value.

Triangle

（Ver.C）

Scans a triangle formed by three vertices

(order is arbitrary), starting from the

smallest Y-axis value.

Diagonal lines are rendered by combining

two triangles.

Context Reference

Normal

Same as Normal,

however, the length is not taken from the

Command List parameters, but instead

from word 0 (32-bit) of the context.

(Word 0 of the context must be
preloaded into memory or written using
the Steal function.)
Y is determined by iIndex[31:16], which

differs from the Line shape.

30

Context Reference

Line

Same as Line,

however, the length is not taken from the

Command List parameters, but instead

from word 0 (32-bit) of the context.

(Word 0 of the context must be
preloaded into memory or written using
the Steal function.)

Context Reference

Rectangle

Same as Rectangle,

however, the width and height are not

taken from the Command List

parameters, but instead from word 0 of

the context.

The lower 16 bits specify the X size, and

the upper 16 bits specify the Y size.

(Word 0 of the context must be
preloaded into memory or written using
the Steal function.)

Context Reference

Triangle

（Ver.C）

Same as Triangle,

however, references word 0 of the

context.

Processing is executed only if

word0[15:0] is non-zero.

If word0[17] is 1:

Draw only clockwise triangles when

word0[16] is 0

Draw only counterclockwise triangles

when word0[16] is 1.

• Scanning within a shape follows the fill rules below to prevent edge overdraw

and gaps. These rules can be disabled if needed.

However, they do not apply to Normal, Line, or Rectangle shapes (in Ver.C).

o Only draw when the center of a grid point lies inside the shape

o If the left edge lies on the ideal line, draw it; if the right edge lies on the

ideal line, do not draw it

o If the left and right edges are the same, do not draw

o Do not draw the final scan line

31

Figure 3 Polygon Fill Rule

Figure 4 Three Triangles Drawing

• For the Normal and Line shapes, a mode is available that places points only at

(0, y).

This can be used for operations such as scanning the X-axis internally and

performing accumulation processing before writing results.

• Texture coordinates are not directly specified for given positions.

Instead, matrix transformations are used to derive texture coordinates from

parametric coordinates.

For details, refer to the application note "Polygon Rendering."

• The Line shape is intended to support coordinates that exceed 16 bits.

This is particularly useful for the Remapper (described later), where 1D arrays

may exceed 16-bit (65536) lengths.

Since values 65537 and above cannot be represented using 2D coordinates,

this mode should be used.

Do not strike (XL==XR)

Do not strike (on ideal line)

Strike (on ideal line)

Do not strike (bottom)

32

Additionally, the coordinate count extracted using the Steal function

(described later) can be used via the context.

• Final parametric coordinates are generated by combining XY coordinates

obtained by scanning the specified shape (Polygon function) and ZW

coordinates supplied via the iIndex signal (Zigzag function).

This coordinate recombination can be independently configured for both

Source and Destination coordinate systems.

(Refer to the Command List for configuration details.)

(𝑥′, 𝑦′) = 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑥, 𝑦)
(𝑥𝑠𝑟𝑐𝐼𝑛, 𝑦𝑠𝑟𝑐𝐼𝑛) = 𝑍𝑖𝑔𝑧𝑎𝑔(𝑥′, 𝑦′, 𝑧, 𝑤,𝑚𝑎𝑠𝑘, 𝑏𝑜𝑥)
(𝑥𝑠𝑟𝑐𝑂𝑢𝑡, 𝑦𝑠𝑟𝑐𝑂𝑢𝑡) = 𝑍𝑖𝑔𝑧𝑎𝑔(𝑥′, 𝑦′, 𝑧, 𝑤,𝑚𝑎𝑠𝑘, 𝑏𝑜𝑥)
(𝑥𝑑𝑠𝑡, 𝑦𝑑𝑠𝑡) = 𝑍𝑖𝑔𝑧𝑎𝑔(𝑥′, 𝑦′, 𝑧, 𝑤, 0,0)

Figure 5 Zigzag Scan

Source and Destination coordinates are independent and can be processed

differently.

For example, the Source coordinates can be set in polar coordinates, while the

Destination coordinates can be individually configured with distortion.

The highest performance is achieved when the Destination coordinates are directly

mapped from parametric coordinates.

However, note that matrix transformations cannot be applied to the Destination

coordinate system.

Figure 6 Coordinate and Data Processing

X

Y

Z

W

(x,y)

(u,v)

Destination

Coodinate

Transfer

(ｒ,θ)

Source

Coodinate

Transfer
Data Processing

Mapping

Data

Mapping

Data

a b c

d e fx

33

3.6. Remapping (Remapper)

• The Remapper, as shown in Figure 9, performs memory access based on the

input parametric coordinates (X, Y) plus an offset, and reads new coordinates

from a table to perform coordinate remapping.

Since preparing mapping data for each pixel would be excessive, it is possible

to sample at every 2ⁿ samples and then use bi-linear interpolation to

reconstruct the final coordinates.

• The Remapper can be configured to either:

o Directly output the mapped coordinates, or

o Add them to the parametric coordinates before output.

This allows specifying relative displacement from the parametric

coordinates.

• If an escape code (0x8000) is read:

o In the Source Remapper, the previously read value is reused.

o In the Destination Remapper, a mask flag is set, which suppresses

memory access for that coordinate (i.e., no rendering).

Note: This has no effect during texture transformation.

Optionally, the escape code behavior can be disabled via configuration.

 Figure 7 Remapper

• Texture transformation is supported as a function mutually exclusive with

coordinate mapping.

In texture transformation, the lower bits of the parametric coordinates XY are

enabled and used to set a new X coordinate.

Then, based on the parametric coordinates, a luminance value is read from

memory and used as the new Y coordinate.

Affine

Transform

Destination

Image

Plane

Initiator

Remapper

Meditation

(x,y) coordinate Table

Address

Generate

Memory

Mapping Data

x,y x,y x,y x,y x,y x,y

x,y

x,y

Temporary

(x,y) coordinate

Bi-linear

Interpolation

Base Address

34

By performing another memory access using this new XY coordinate, an image

with scattered luminance can be obtained.

For more details, refer to the application note "Abstraction."

• The matrix transformation (Affine/Homography Transform) described later

requires single-precision floating-point input.

Therefore, in this Remapper section, you can select conversion from:

o Integer to single-precision float

o Half-precision float to single-precision float

o No conversion

In these cases, you must specify 32-bit × 2 words instead of packed 16-bit

× 2 words.

Note that when a floating-point format is selected, bi-linear interpolation

cannot be used.

MapInfoFormat Description

Nearest Coordinate data packed as 16-bit words in
memory
 (Xo, Yo) = mem(Xi, Yi) Bi-linear

2x1

Coordinate data packed as 32-bit words in
memory
Xo = mem(2 Xi, Yi)
Yo = mem(2 Xi + 1, Yi)

1x2

Coordinate data striped in 32-bit words in
memory
Xo = mem(Xi, 2 Yi)
Yo = mem(Xi, 2 Yi + 1)

• (Xi, Yi) are the input coordinates, and (Xo, Yo) are the output coordinates.

• mem() refers to a memory array consisting of 32-bit words.

When mapping data is sampled at every 2ⁿ intervals, the area reduces to ¼ with each

increase in N, allowing significant compression of the mapping data.

This also contributes to a reduction in memory access.

However, this method is only applicable when the mapping data exhibits relatively

linear variation, rather than discrete jumps.

Additionally, floating-point format data cannot be used for 2ⁿ-sampled mapping data.

35

Figure 8 Compressed Map Data

3.7. Matrix Transformation (Affine/Homography Transform)

• The matrix transformation converts coordinates generated by the Remapper

(in floating-point format) into Source coordinates (fixed-point format).

Based on the Source coordinates, Destination coordinates may optionally be

used.

As shown in Figure 11, there are four basic transformation modes, with all

coefficients in floating-point format.

Figure 9 Affine/Homography Transform

Meditation

(x,y) coordinate

1 ½2 ¼2 ⅛2

Picture
Bi-linear

Interpolation

½ ¼ ⅛

Prepared mapp data

on external memory

New coordinate

(xs,ys) Pixel Cache

(Memory Access)
Remapper

(u,v)

Homography Mode 1:

Rotate Mode 1:

(xs,ys)
m20·xs

m21·xs

m22

Source

Image

Plane

Remapper
(u,v)

(xd,yd)

R=xs

θ=ys

xs

ys

1

m00 m01 m02

m10 m11 m12

m20 m21 m22

cos ys –sin ys m02

sin ys cos ys m12

xs

ys

1

(xs,ys)
Remapper

(u,v)

xs + m02

ys + m12

1

m00 m01 xd

m10 m11 yd

m20 m21 m22

xs

ys

1

Homography Mode 2:

(xs,ys) m20(xs+m02)

m21(xs+m02)

m22

Source

Image

Plane

Remapper
(u,v)

(xd,yd)

R=xs +m02

θ=ys+m12
cos(ys+m12) –sin(ys+m12) xd

sin(ys+m12) cos(ys+m12) yd

(xd,yd)

(xd,yd)

Rotate Mode 2:

36

 In Homography mode, image operations such as translation, scaling, rotation, and

distortion based on raster scanning can be performed.

Since this mode includes a division function, perspective correction is also supported.

 In Rotate mode, angle and magnitude are specified for each pixel to perform

rotational coordinate operations.

This mode requires floating-point coordinate input for both angle and magnitude.

Therefore, coordinates must be converted to floating-point format using the

Remapper—integer coordinates cannot be used directly.

 Operations are performed in the order: Remapping → Matrix Transformation.

Conversely, this means that with respect to Source coordinates, the operations are

applied in the order: Matrix Transformation → Remapping.

For example, when applying a polar coordinate transformation centered on a shifted

point in the image, you would first perform translation using matrix transformation,

then apply the coordinate transformation.

For further details, refer to the application note “Coordinate Operations.”

Figure 10 Example of Homography Transformation

Flip Horizontally

Original Rotate

EnlargeShrink

Slant

Flip Vertically

Homography

37

3.8. Pixel Cache

• The pixel cache retrieves data within a certain range centered around a

specified coordinate (O) from memory and loads it into cache memory.

• The range of the cache is automatically determined based on the specified

filter mode.

• When the source coordinate is updated, only the differential data is refilled

from memory.

Figure 11 Kernel Size

• The pixel cache consists of two sets: the Source In type and the Source Out

type. The Source In type supports ARGB with a 5×5 kernel, while the Source

Out type supports only grayscale with a 9×9 kernel. However, for kernels up

to 3×3, ARGB is also supported.

• Pixels outside the image area are replaced with an arbitrary default value.

Additionally, several edge options can be configured for the cache output. It is

disabled when the image width is set to 0.

Point

Mode

-1

O

0 +1 +2

-1

0

+1

+2

Liner

Mode

Quadratic

Mode

Cubic

Mode

-2

-2 -1

O

0 +1 +2-2 -1

O

0 +1 +2-2 -1

O

0 +1 +2-2 -1

O

0 +1 +2-2

Quartic

Mode

O O

-1 0 +1 +2-2 +3 +4-3-4-1 0 +1 +2-2 +3 +4-3-4

7x7

Mode

9x9

Mode

38

Figure 12 Replicate Edge Pixels

Option Description

0

CV: Exclusive

If the center coordinate is out of bounds,
replace the entire pixel cache with the

default value.
1

CV: -

Do not perform out-of-bound checking.
Equivalent to setting Width = 0.

8

CV: Constant

Replace out-of-bound pixels with a default

value.
9

CV: Replica
（Ver.AB は不可）

Replace out-of-bound pixels with the value

of the nearest valid pixel.

10

CV: Warp
（Ver.AB は不可）

Replace out-of-bound pixels with the

corresponding values from a wrapped-around
image.

11

CV: Reflect_101
（Ver.AB は不可）

Replace out-of-bound pixels with the
corresponding values from a mirrored image
(pixels beyond the edge are reflected at the

edge point).

Image

Plane

(widthX, widthY)

(0, 0)

Vector

indicate

replicant

39

15

CV:Reflect
（Ver.AB は不可）

Replace out-of-bound pixels with the
corresponding values from a mirrored image
(pixels beyond the edge are treated as the

same edge value).

・ As the kernel size increases, the load on memory also increases

proportionally. The Source In type performs up to 5 simultaneous memory

accesses, while the Source Out type performs up to 9. The external memory

system should be parallelized as much as possible to support simultaneous

access.

・ Kernel size settings are separated for the Source In and Source Out types.

Both SrcIn and SrcOut types support special addressing schemes, as shown in

Figure 15, to enable processing along the time axis rather than the spatial axis

(Ver.AB). Memory is accessed by cumulatively adding the offset (2 ×

FilterCntl.Stride) from the kernel center coordinate (O).

Figure 13 Kernel Filling in Time Domain

-1

+2

-3 -2

0 +1

+3 +4

-4

X,Y

Base Address

Picture

Offset

3x3 Kernel

40

In the SrcIn type, specifying a 5×5 kernel size with a 1bpp format allows handling of a

32×25 bitmap. However, this requires the use of a subsequent bitmap filter. The

bitmap filter operates on a 32×25 bitmap, utilizing the central 25×25 pixels. The

default value is set to 0x00000000 for "0" and 0xffffffff for "1". Bitmap alignment can

be either left-aligned or right-aligned (only left alignment is supported in Ver.A).

Figure 14 Bitmap Kernel

In both the SrcIn and SrcOut types, memory access for horizontal kernel lines can be

masked. When there are unused horizontal lines, they can be deliberately disabled to

reduce memory access load. Coefficient adjustment corresponding to the unused

lines (e.g., setting coefficients to 0) is required.

Figure 15 Kernel Load Reduction

3.9. Filter Data and Coefficient Selection

• Data and coefficients for the filter are selected and input from the Command

List data, pixel cache output, or tables (see Figure 19). The basic configuration

uses 4 elements from a 5×5 kernel, and the input selection options are as

follows.

• Only the Pattern Filter directly uses a 9×9 kernel. Details are described

below.

5x5の32bit

キャッシュ
32x25の1bit

キャッシュ

32
bit

1Bppフォーマット

41

Input Description

Command List
Parameters within the Command List:
Coef000–003, Coef100–107, Coef200–215

SrcIn
5×5 pixel cache output (Source In type)
Supports the 4 ARGB components.

SrcOut
9×9 pixel cache output (Source Out type)
Supports only a single Gray component.

SrcOut’

Rearranged 9×9 (Gray) or 1×1 (Color) pixel
cache output (Source Out type) into 5×5
blocks
Placement varies for each element.

Blut Lookup Table used in Blender.

 The SrcOut type supports grayscale and allows up to a 9×9 kernel, but in the 2D

Filter, only up to 5×5 elements are supported per filter pass. Therefore, a 9×9

kernel is split into 4 elements, and a 7×7 kernel is split into 2 elements for

processing.

 "SrcOut’" is generated by rearranging the pixel cache output of the SrcOut type

into a 5×5 kernel. Placement Type 0 corresponds to 5×5; Types 0 and 1 together

cover 7×7; and Types 0 through 3 cover 9×9. These placement types are exclusive,

with no overlapping regions.

By selecting the appropriate data and coefficients, arbitrary filtering from 5×5 to

9×9 can be performed. Figure 18 shows the relative positions when a 9×9 kernel is

rearranged into 5×5 blocks. The numbers indicate the order from the top-left to

bottom-right of the original 9×9 kernel.

FilterCntlOp.InSel[5:4] Description

0
All ARGB elements use 9×9 (Gray)
Placement Type 0.

1

R and B elements use 9×9 (Gray) Placement
Type 0
A and G elements use 9×9 (Gray)
Placement Type 1

42

2

B element uses 9×9 (Gray) Placement Type
0
G element uses 9×9 (Gray) Placement Type
1
R element uses 9×9 (Gray) Placement Type
2
A element uses 9×9 (Gray) Placement Type
3

3

B element uses the B component of the 1×1
(Color)
G element uses the G component of the
1×1 (Color)
R element uses the R component of the 1×1
(Color)
A element uses the A component of the 1×1
(Color)

Figure 16 Relocation of 9x9 position

 Data selection can be made from SrcIn, SrcOut, or a constant value of 1.0, and is

selectable per element.

8 17263544
73 0 1 2 53
74 7 3 62
75 6 5 4 71
7677787980

726354
9 45
182736

Type

Relocation

2021222324
2930313233
3839404142
4748495051
5657585960

3443526170
1910111269
2825 1368
3716151467
4655646566

0 1 2 3

Blank indicate zero value

43

 For SrcOut, each element is assigned either 9×9 Gray or 1×1 Color based on

FilterCntlOp.InSel[5:4].

 Ultimately, 8-bit data for four elements with a 5×5 kernel size is output to the

filter.

FilterCntlIn.Force[2n+1:2n] Description

0 SrcIn

1 SrcOut (Gray)

2
The central 3×3 region is from SrcIn, while
the surrounding area is from SrcOut (Ver.C).

3 All pixels are set to 1.0.

• Coefficients can be selected from Command List data, the outputs of the two

pixel caches, or user-defined tables.

• Ultimately, 16-bit data for four elements with a 5×5 kernel size is output to

the filter.

FilterCntlOp.InSel[1:0] Description

0 Command List

1 Blut

2 SrcIn

3 SrcOut’

 When coefficients are set in the Command List, the output behavior differs

between the 2D/2F (Ver.C) Filters and other filters.

 2D/2F Filters allow flexible arrangement of 5×5 coefficients for each element.

 Other filters use the Command List coefficients in a straightforward sequential

layout.

44

 The numbers indicate the index of the Coef data in the Command List.

• White cells: Coef000

• Green cells: Coef100–107

• Orange cells: Coef200–215

• White-outlined cells: fixed values 0.0 / 1.0

• Gray cells: undefined values

Filter Type Description

2D/2F/
SAD/SSD

Selected[1:0]
by element

from
FilterCntlOp.I

nOp

0 1 2 3

FilterCntlIn
Mode[3]=0

FilterCntlIn
Mode[3]=1

Bitmap - Reserved

Non-linear

Component B G R A

Mask 25bit
Coef000[0]

-
Coef215[0]

Coef000[1]
-

Coef215[1]

Coef000[2]
-

Coef215[2]

Coef000[3]
-

Coef215[3]

Mask

Lut 256bit Coef207-200[15:0], Coef107-100[15:0]
InColor 8bit Coef208[7:0]
InDelta 16bit Coef209[15:0]
OutColor 8bit Coef210[7:0]

OutDelta
16bit

Coef211[15:0]

ReplaceColor
32bit

Coef213[15:0], Coef212[15:0]

Hamming N 32bit Coef101[15:0], Coef100[15:0]
Extrema - Reserved

 When coefficients are set using Blut, the coefficient output is applied uniformly as

a 5×5 matrix across all filters.

45

 The numbers represent the Blut indices.

 For example, the coefficient for the central element B is formed by concatenating

the 8-bit values of Blut0 and Blut1 into a 16-bit value: {Blut1, Blut0}.

Filter Type Description

All

Component B G R A

 The positional relationship with the Command List coefficients is as follows. When

replacing Command List settings with Blut, use the corresponding mapping shown

below.

 This mapping also applies to coefficient values that are defined redundantly in the

Coef fields.

Blut Number Coef Number Blut Number Coef Number

1, 0 Coef000 25, 24 Coef200

3, 2 Coef001 27, 26 Coef201

5, 4 Coef002 29, 28 Coef202

7, 6 Coef003 31, 30 Coef203

9, 8 Coef100 33, 32 Coef204

11, 10 Coef101 35, 34 Coef205

13, 12 Coef102 37, 36 Coef206

15, 14 Coef103 39, 38 Coef207

17, 16 Coef104 41, 40 Coef208

19, 18 Coef105 43, 42 Coef209

21, 20 Coef106 45, 44 Coef210

23, 22 Coef107 47, 46 Coef211

 49, 48 Coef212

 51, 50 Coef213

 53, 52 Coef214

 55, 54 Coef215

46

 When coefficients are set to SrcIn, the values from SrcIn are converted to float

and directly used as the 5×5 coefficient matrix.

 When coefficients are set to SrcOut’, the values from SrcOut’ are converted to

float and directly used as the 5×5 coefficient matrix.

Figure 17 Inputs of Filter

3.10. Preprocessing for Bayer Images

• Input data to the filter can be selectively extracted using a 4×4 mask pattern

for pixels and elements. Pixels and elements that do not match the pattern are

replaced with a value of 0. This function is useful for extracting only the

assigned elements from a Bayer image.

Command List

srcOut[7:0] 9x9

srcIn[7:0] 5x5x4

coef[15:0] 5x5x4

2D
data[7:0] 5x5x4

mask 5x5x4

None-linear
data[7:0] 5x5x4

control parameter

Mask
data[7:0] 3x3x4

In
Sel[1:0]

data[7:0] 9x9 (Gray)

Pattern
data[7:0] 1x1 (ARGB)

In
Fo

rce

1

0

2

3

coef[31:0]

Hamming
data[31:0]

InSel
[5:4]

Blut

data[7:0] 3x3x1 (upper)

Extrema
data[7:0] 3x3x4 (lower)

formatter

1

0

2

3

1.0

srcOut[31:0] 1x1

(color kernel)

SrcOut’

47

• There are two approaches for applying the mask pattern:

1. Treat the Bayer image as a grayscale image and set non-target

elements to 0.

2. Convert the Bayer image to full color in a single pass, assigning

different patterns to each ARGB component.

Figure 20 shows examples of a grayscale image with only the Green

element extracted, and a full-color image where each component is

extracted without overlap. The image can then be restored using filters

such as a Gaussian filter.

• When extracting a single element, the 4× speed Gray image processing mode

can be used.

For extracting two or more elements simultaneously, use the standard Gray

image (Replica) setting.

• The mask pattern values are set via the BayerMask0–3 registers.

Whether the Bayer mask is applied is controlled by the FilterCntlOut.Force

setting in the Command List.

Figure 18 Bayer Image Transfer

3.11. Filter

• Eight types of filters with different purposes and kernel sizes are implemented.

Seven filters are for SrcIn-type images, and one is for SrcOut-type images.

Bit0 Bit1 Bit2 Bit3

0 1 0 1
Bit4 Bit5 Bit6 Bit7

1 1 1 1
Bit8 Bit9 Bit10 Bit11

0 1 0 1
Bit12 Bit13 Bit14 Bit15

1 1 1 1

Bit0 Bit1 Bit2 Bit3

0 1 0 1
Bit4 Bit5 Bit6 Bit7

1 1 1 1
Bit8 Bit9 Bit10 Bit11

0 1 0 1
Bit12 Bit13 Bit14 Bit15

1 1 1 1

Bit0 Bit1 Bit2 Bit3

1 0 1 0
Bit4 Bit5 Bit6 Bit7

0 1 0 1
Bit8 Bit9 Bit10 Bit11

1 0 1 0
Bit12 Bit13 Bit14 Bit15

0 1 0 1

Bit0 Bit1 Bit2 Bit3

1 1 1 1
Bit4 Bit5 Bit6 Bit7

1 0 1 0
Bit8 Bit9 Bit10 Bit11

1 1 1 1
Bit12 Bit13 Bit14 Bit15

1 0 1 0

Extract
blue

element

Extract
blue

element

Extract
green
element

Extract
red

element

Gray scale image

Full color image

Bayer image

48

Only one filter from the same type group can be selected at a time, but filters

from different groups can be processed simultaneously.

Filter Types:

• 2D Filter (SrcIn): Performs convolution using arbitrary coefficients and pixel

values with fixed-point precision, supporting kernel sizes from 5×5 to 9×9.

• 2F Filter (SrcIn): Performs convolution using arbitrary coefficients and pixel

values with floating-point precision, supporting up to a 5×5 kernel.

• Bitmap Filter (SrcIn): Based on a 32×25 binary pattern, returns the nearest

valid label from the center.

• None-linear Filter (SrcIn): Selects the median in a 3×3 region or the

minimum/maximum value up to a 9×9 kernel.

• Mask Filter (SrcIn): Operates on the center pixel based on the median and

surrounding values within a 3×3 region.

• Extrema Filter (SrcIn): Performs extremum detection across up to 8 layers of

grayscale images within a 3×3 region.

• Pattern Filter (SrcOut): Converts the relationship between the median or fixed

value and surrounding pixels in a 9×9 region into a binary pattern.

• For SrcIn-type filters, if the result meets certain conditions, the coordinates

of the corresponding pixels can be written to memory.

The coordinates are stored as 32-bit fixed-point (X, Y), and packed

sequentially in order of output.

The conditions for writing vary by filter type and are described below.

Filter Mode Description

2D

When the result of the selected element

exceeds ±1.0

(excluding 1.0 itself)

2F When the result is negative.

None-liner

Returns true if the center pixel matches

the specified type (median, maximum, or

minimum).

If multiple candidates exist, the center

pixel takes priority.

Mask When the evaluation result is true.

Hamming When outputting the total (sum) value.

Extrema
When a local maximum or minimum is

detected.

49

Bitmap None.

Pattern None.

・Coefficients are generally provided as parameters, but they can also be replaced

with data from the SrcIn or SrcOut types.

3.11.1. 2D/2F/SAD/SSD Filter (SrcIn)

• The 2D/2F Filter performs convolution on pixel data arranged in a kernel

generated by the Pixel Cache, using arbitrary (float) coefficients along with

interpolation coefficients automatically derived from pixel positions. The

required kernel size is automatically communicated to the Pixel Cache.

Filtering can be enabled or disabled per element.

• The 2F Filter (Ver.C) processes each pixel using half-precision floating-point

arithmetic. Both input and output formats can be selected as either half-

precision floating point or fixed point.

• The 2F Filter (Ver.C) also supports SAD (Sum of Absolute Difference) and

SSD (Sum of Squared Difference) operations. By specifying data and

coefficients from SrcIn and SrcOut, and applying an offset to SrcOut

coordinates through remapping, it identifies both the sequence of minimum

values and the corresponding sequence numbers.

• Data input consists of 8-bit data for four elements using a 5×5 kernel.

Coefficient input consists of 16-bit data for four elements using a 5×5 kernel.

• The following interpolation modes are available:

o Ver.AB: Fixed-point truncation

o Ver.C: Selectable between rounding and truncation

Interpolation Mode Description

Nearest Nearest-neighbor interpolation.

Bi-linear Linear interpolation.

Bi-cubic Cubic interpolation.

Interpolation coefficients are automatically calculated based on the fractional

distances to neighboring pixels.

For each fractional distance ⊿X and ⊿Y, the corresponding coefficients CXn (for the

50

X-axis) and CYn (for the Y-axis) are computed.

These are then multiplied in matrix form to obtain the coefficients for each grid point.

Figure 19 Interpolation Image

• In Bi-linear mode, the coefficients along the X-axis or Y-axis are calculated

using the following formulas.

A 2×2 kernel is used.

𝐶0 = 0

𝐶1 = 1 − ∆

𝐶2 = ∆

𝐶3 = 0

・In Bi-cubic mode, the coefficients along the X-axis or Y-axis are calculated using

the following formulas.

A 4×4 kernel is used.

𝐶0 = −∆3 + 2∆2 − ∆
𝐶1 = ∆3 − 2∆2 + 1
𝐶2 = −∆3 + ∆2 + ∆

ΔX

ΔY

CX0 CX1 CX2 CX3

CY3

CY2

CY1

CY0

51

𝐶3 = ∆3 − ∆2

• The transformation is performed by applying an affine transformation to the

input coordinates based on the output coordinates, with both sharing the same

origin at (0,0).

For example, doubling the size and then scaling down by half will return the

image to its original state.

In contrast, a 1/2 reduction directly results in decimated pixel values from the

original image.

To perform downscaling without aliasing, configure a parallel shift via affine

transformation at (x, y).

For instance, in a 1/2 downscale, set m00 = 2.0, m11 = 2.0.

For more details on coordinate transformations, refer to the application note

"Coordinate Operations".

• The following five filter sizes are available.

Arbitrary coefficient filters and interpolation can generally be processed

simultaneously, except in certain cases.

The target elements for processing can be freely selected.

Note: Bi-cubic interpolation cannot be used with arbitrary coefficients.

Filter

Mode
Performance Specifiable interpolation types

1x1

4 elements per pixel

/ per cycle

(2F processes 1

element only)

Nearest

2x2
Nearest

Bi-linear

3x3 Nearest

4x4

Nearest

Bi-linear

Bi-cubic

5x5 Nearest

7x7

2 elements per pixel

/ per cycle

(2F processes 1

element only)
Nearest

9x9

（2D のみ）

1 element per pixel

/ per cycle

1x1 1 element per 4

pixels
Nearest

2x2

52

3x3 / per cycle

(2D only) 4x4

5x5

5x5

FilterCntl

Op.InSel[3

]=’1’

4 elements per 0.5

pixel

/ per cycle

Nearest

• Filter output may include negative values depending on the coefficients used.

While downstream modules can handle negative values, it is also possible to

forcibly convert the output to positive values at this stage.

Option Description

Absolute
If the 9-bit output value is negative,

convert it to a positive value.

・The SrcOut type can provide grayscale data up to a 9×9 kernel, but the 2D Filter

supports only up to 5×5 per element.

Therefore, for a 9×9 kernel, the data is divided into 4 elements; for a 7×7 kernel,

into 2 elements.

These are processed individually and then integrated (added) in the final stage.

Figure 20 In case of two 7x7 Filter

Add

Add

Coef Blue

Coef Blue

Coef Blue

Coef Blue

2D Filter

Blue

2D Filter

Green

2D Filter

Red

2D Filter

Alpha

53

• In Ver.C, it is possible to mix SrcIn and SrcOut pixel data within a single

kernel. The central 3×3 region uses SrcIn, while the surrounding 12 pixels are

sourced from SrcOut. Applying a 2D filter with arbitrary coefficients on this

combined kernel allows simultaneous addition or subtraction of SrcIn and

SrcOut data.

• After filtering, each element is represented in 9-bit format within the range of

−1.0 to +1.0.

The value 0x100 corresponds to the maximum (1.0), and 0x101 corresponds to

the minimum (−255/256).

• Under specific grayscale processing conditions, 4× speed filter operation is

supported. This replaces 4-element parallel processing with 4-pixel parallel

processing. Although the image is handled as if it were full-color ARGB, it is

functionally grayscale.

To enable this, set the processing size and stride to one-fourth, and change

the SrcIn format (SrcInInfo.Rot).

Conditions for 4× speed filtering:

• Grayscale filters with kernel size up to 5×5

• Image input is grayscale (supplied from SrcIn)

• Image width is a multiple of 4

• No element-wise operations in 3D Clut or Blender

• Statistics are gathered for each X-coordinate modulo 4 (0, 1, 2, 3)

• The steal flag is the sum of overflows per element (values exceeding +1.0 or

below −1.0).

To ignore certain elements, set the corresponding FilterCntlIn.En to '0'.

• Coefficients can be weighted using a Gaussian distribution based on the

difference between the center pixel and surrounding pixels

(FilterCntlOp.InSel[3:2] = '2').

The variance σ of the Gaussian is specified via FilterCoef00.Thresh[3:0].

When applying a smoothing filter, using a coefficient table where large pixel

differences (likely edges) result in smaller weights helps preserve edges—this

is equivalent to a Bilateral filter.

However, the processing speed is reduced to 2 elements per cycle, and only

kernel sizes up to 5×5 are supported.

The elements and data source types (SrcIn/SrcOut) used for evaluation and

filtering can be freely selected (Ver.C).

54

Figure 21 Coefficient Operation

3.11.2. None-linear Filter (SrcIn)

• The None-linear filter sorts pixel values within a specified region and selects

the median, maximum, or minimum value.

The median is supported up to a 3×3 kernel, while maximum and minimum

values are supported up to 9×9.

• Specific kernel positions can be masked (excluded from sorting) using

coefficient settings.

Filter

Mode
Performance Combinable Interpolation Types

3x3

Min/Max/

Median
4 elements per pixel

/ per cycle

Nearest

5x5

Min/Max

7x7

Min/Max

2 elements per pixel

/ per cycle

9x9

Min/Max

1 element per pixel

/ per cycle

3x3

Min/Max/

1 element per 4

pixels

Absolute Diff

8bit

x

●

○

Lookup

Table

○

Scale Factor

8bit

Coefficients

Cache

-

2D Filter

55

Median / per cycle

5x5

Min/Max

• Data input consists of 8-bit data for four elements using a 5×5 kernel.

If the kernel size is smaller than 5×5 (as specified by the Filter Mode), the

unused portions are filled with 0.

• Coefficient input is a 25-bit mask per element (representing the 5×5 kernel).

This mask must be set regardless of the image cache size specified in

FilterCntl0.InMode.

When coefficients are referenced from the Command List, specific mappings

apply—refer to the corresponding bit positions for correct configuration.

• Even if the image cache size is 3×3, the data is treated as a 5×5 array with

zero-padding.

For example, in Min filtering, if the mask is not applied and zero-padding is

included, the result will always be 0, since the 0 values will be considered in

the evaluation.

Componen

t
Parameter Bit Location

Blue
Coef000[15:0] Bit0-15

Coef001[8:0] Bit16-24

Green
Coef100[15:0] Bit0-15

Coef101[8:0] Bit16-24

Red
Coef104[15:0] Bit0-15

Coef105[8:0] Bit16-24

Alpha
Coef200[15:0] Bit0-15

Coef201[8:0] Bit16-24

Bit9 Bit10 Bit11 Bit12 Bit13

Bit24 Bit1 Bit2 Bit3 Bit14

Bit23 Bit8 Bit0 Bit4 Bit15

Bit22 Bit7 Bit6 Bit5 Bit16

Bit21 Bit20 Bit19 Bit18 Bit17

56

 Each element can independently select any of the Min, Max, or Median filters.

Additionally, the result from a specified evaluation element can be used to apply the

same selected position to all other elements.

For example, if element A is used for evaluation, the position selected (e.g., top-left)

will be applied to elements R, G, and B as well.

 If multiple pixels within the kernel share the same evaluation value (e.g.,

maximum), the center position is prioritized.

For instance, if four maximum values are found in a 5×5 kernel including the center,

the center is selected as the result.

 The SrcOut type can supply grayscale data up to a 9×9 kernel, but the None-

linear Filter supports only up to 5×5 per element.

Therefore, for 9×9, the data is divided into 4 elements; for 7×7, into 2 elements.

These are processed individually and then integrated (via Min/Max) in the final stage.

This follows the same approach as in the 2D Filter.

 After filtering, each element is represented using a 9-bit value in the range 0.0 to

1.0.

0x100 represents the maximum value (1.0), and 0x0 the minimum (0.0).

 The signed flag (SrcInInfo.Signed) for the SrcIn format is effective.

Internally, a temporary offset of 0x80 is applied before sorting, and the original value

is restored before output.

 The steal flag is asserted as true when the center pixel value (of the selected

element) matches the selected pixel value (of the same element) resulting from the

evaluation.

57

Figure 22 In case of 9x9 Minimum Filter

• You can either select one of the four flags or create a new flag by combining

multiple flags.

3.11.3. Mask Filter（SrcIn）

• The Mask filter evaluates the relationship between the center value and

surrounding values in a 3x3 matrix, determines the result based on the truth

conditions, and outputs a specific value according to the combination.

Filter

Mode
Performance Combinable Interpolation Typeｓ

3x3
1 pixel, 1 component

/ cycle
Nearest

After generating the final flag as described below, data generation is performed.

The flag is determined using a user-defined table based on the result of a truth

evaluation.

The data output can be selected from two methods:

One method outputs the original data, replaces the data, or directly outputs the result

of the truth evaluation based on the flag result.

Min

Min

Min

Min

Min

58

Figure 23 Mask Filter

• The truth value of the center is represented by 2 bits based on its comparison

with a specified value. One component is selected arbitrarily as the center

value. Note that if FilterCenter.DeltaUpper = '0', the comparison is performed

using 0x100.

TrueK0 = KernelValue ≥ (FilterCenter. Value − FilterCenter. DeltaLower)

TrueK1 = KernelValue < (FilterCenter. Value + FilterCenter. DeltaUpper)

• The truth value of surrounding values is represented by 2 bits based on their

comparison with either a specified value or the center value. One component

is arbitrarily selected as the surrounding value. Unlike coefficients, the

surrounding pixels are numbered sequentially in a clockwise order. Note that if

FilterAround.DeltaUpper = '0', the comparison is performed using 0x100.

True[i]0 = AroundValue[i]

≥ (FilterAround. Value or Kernel − FilterAround. DelterLower)

True[i]0 = AroundValue[i]

< (FilterAround. Value or Kernel + FilterAround. DeltaaUpper)

1

7 K

0

6 5

3

2

4

32x8

loc[2:0]

kernel[7:0]

Table[3:0] x8

8

eval

1

BLUT

256Byte

B
o

o
l[k

,A
]

Flag

sel[7:0] x8

32

32

OutDelta

OutColor

1
 0

eval

InColor

InDelta

1
 0

8

&

1

8

Mix

ReplaceColor

32x8

32

Sel

F
la

g
, M

o
d
e
[1

:0
]

0
 1

 2

32

Mode[1:0]

Bool[3:0]
InScale[3:0]

TrueK[1:0]

True[1:0] x8

Const
InOp[1]

Around
InOp[7:6]

Kernel
InOp[5:4]

Loc
InOp[3:2]

ResultK

Data

Index[7:0]

ResultA

CL/BLUT

8x32Bit

&

&
CL/BLUT

512Bit

Sel

Comp
InOp[0]

InSel[0] &

Index[8]

59

• The final flag is generated based on the evaluation result of the center value's

truth value and the surrounding values' truth values (using a user-defined

table). The evaluation of the center value's truth is performed as follows:

ResultK = TrueK0 & TrueK1

The evaluation of the truth values for the surrounding pixels is performed within a 3x3

area and can be selected from the following two methods:

• Multiply the 2-bit truth value of each pixel to generate a total of 8 bits

corresponding to the surrounding pixels. This 8-bit value is used as an index to

a 1-bit × 256 table (FilterTable) to obtain a 1-bit result.

• Alternatively, include the center value's result to form a 9-bit index, and use it

to look up a 1-bit × 512 table (Blut) to obtain a 1-bit result.

Index[i] = True[i]0 & True[i]1 (𝑖 = 0 − 7)
Index[8] = True𝐾0 & True𝐾1

ResultA = FilterTable(as 1bit table)[Index[7: 0]] or
ResultA = Blut(as 1bit table)[Index[8: 0]]

• The lower 3 bits of the center value of the element selected by

FilterCntlOp.InOp[3:2] are used as an index to a 32-bit × 8 table (FilterTable)

to obtain a 32-bit value. This value is then divided into 4-bit segments for

each surrounding pixel. After evaluating the 2-bit truth value of each pixel

against the corresponding 4-bit segment, the results are multiplied to obtain a

final 1-bit result.

Table = FilterTable(as 32bit table)[KernelValue[2: 0]]

Temporary[i] = Table(as 4bit table)[i] (𝑖 = 0 − 7)

ResultA =⋂Temporary[i][2 ∙ True[i]1 + True[i]0]

𝑖

 (𝑖 = 0 − 7)

The final flag is obtained through the following Boolean algebra computation.

Flag = FilterCoef00. Scale[2 ∙ ResultK + ResultA]

60

• For example, in a Canny filter, suppose the absolute luminance is assigned to

element B, and the luminance gradient (in 8 directions) is assigned to element

G. The second method described above is used for evaluating the truth values

of surrounding pixels. The operations for the 8 surrounding pixels are retrieved

from the FilterTable using element G (luminance gradient). Each operation is

expressed in 4 bits; by setting only the bit corresponding to

FilterCenter.DeltaUpper to '1' and the others to '0', the first bit represents

"≥", the second "≤", and the third "=" in the comparison between the center

and surrounding pixels. The condition is set for each surrounding pixel, and the

flag is set to '1' only if all surrounding pixels satisfy the condition (operations

in FilterCntlOp.InOp are also required).

• In addition to the above Mask processing, a Mix process can be performed

where a new pixel value is generated based on the pattern of the truth

evaluation results True[i] for the surrounding pixels by referencing a Lookup

Table (Blut). For example, if the center value is determined to be inappropriate

relative to the surrounding values, a new center value can be created using

those surrounding pixel values. The Blut is accessed using the truth result, and

only the surrounding pixels corresponding to '1' bits in the obtained 8-bit value

are considered valid. If multiple bits are '1', the average of the corresponding

reference pixel values is used as the replacement value.

Blut Value Replace Value

Blut[0] = 1

Pixel 0 of the 3x3 region (see Figure

25)

Blut[1] = 1

Pixel 1 of the 3x3 region (see Figure

25)

Blut[2] = 1

Pixel 2 of the 3x3 region (see Figure

25)

Blut[3] = 1

Pixel 3 of the 3x3 region (see Figure

25)

Blut[4] = 1

Pixel 4 of the 3x3 region (see Figure

25)

Blut[5] = 1

Pixel 5 of the 3x3 region (see Figure

25)

61

Blut[6] = 1

Pixel 6 of the 3x3 region (see Figure

25)

Blut[7] = 1

Pixel 7 of the 3x3 region (see Figure

25)

Blut[7:0] = All 0 FilterReplace

• When configuring the FilterTable as a Blut, parameters such as

FilterCenter.DeltaUpper, which are redundantly defined in the Coef section of

the Command List, must also be configured within the Blut.

3.11.4. Hamming Filter（SrcIn/SrcOut）（Ver.C）

• The Hamming filter calculates the Hamming distance between two binary

patterns and outputs either the smallest or largest value within a single

fragmentation process (the former when FilterCntlIn.Mode = '0', the latter

when FilterCntlIn.Mode = '1'). It also outputs the corresponding position.

• The binary data unit must be a multiple of 32 bits. The binary pattern is

represented as a two-dimensional array of concatenated patterns. The size of

the two-dimensional array is specified by the polygon-shaped rectangle (XMax,

YMax), and the index given from pss to frComp is based on the origin at (X, Y)

= 0.

• When processing two-dimensional binary patterns consecutively, it is

necessary to specify whether the operation is cross-correlation or auto-

correlation (auto-correlation must be disabled when using identical patterns;

otherwise, the distance will always be zero). Also, the index Y from pss to

frComp must be set to YMax. This enables exhaustive processing over XMax

× 32 bits units repeated YMax² times.

• Care must be taken with various settings. Please refer to the example

configuration for performing auto-correlation between N entries of 256-bit

units (32-bit × 8). (The configuration values are in decimal format.)

• The flag used in Steal becomes true at the end of the polygon-shaped

rectangle.

62

Parameter Description

Delta from pss

Set the number of processing iterations in

the X direction to 0, and configure it so

that the number of processing iterations in

the Y direction becomes M.

MasterCntl.Shape='10'

Specify the polygon-shaped rectangle,

and write only the final data of the X

coordinate to memory.

MasterCntl_BoxX='10'

Replace the destination X coordinate with

the Y coordinate obtained after the shape

processing.

MasterCntl_BoxY='13'
Replace the destination Y coordinate with

the Y coordinate received from pss.

MasterCntl.OutRead='1' Enable SrcOut reading.

MasterCntl.OutScan='2'
Modify the scan direction of the SrcOut Y

coordinate using SrcOffset.

SrcInInfo.Exp/Format='3'

Set to 32bpp (the stride is generally based

on XMax when a polygon shape is

specified).

SrcOutInfo.Exp/Format='3'

Set to 32bpp (stride is generally

determined by XMax when a polygon

shape is specified).

DstOutInfo.Exp/Format='3'

Set to 32bpp (stride is generally

determined by YMax when a polygon

shape is specified).

DstOffset.CoorY0='3'

In SrcOut, replace the source Y

coordinate with the Y coordinate received

from pss.

FilterCntlIn.Class='6'

FilterCntlIn.Mode='2'

FilterCntlOp.InSel[1:0]='3'

Specify the Hamming filter (Self/Min) and

select SrcOut as the coefficient.

FilterCntlOp.InOp

Set the output format.

In the case of 0xE4.

Output Data = {Eval, Comp}

Output Origin = {PosY, PosX}

FilterCoef00.CoefRef
Set YMax for the polygon shape

specification.

63

3.11.5. Extrema Filter（SrcIn）

• The Extrema filter treats a 3x3 region as a single layer and determines

whether the center pixel is a local minimum or maximum across multiple layers,

as shown in the table below. In Ver.AB, up to 5 layers can be used; in Ver.C,

up to 8 layers are supported. The filter scans through the layers by shifting

them three at a time, checking for extrema (minimum or maximum) at the

center pixel across three consecutive layers.

• The scan starts from the lowest layer, and the evaluation stops at the first

layer where the condition is met. The number of layers is specified by

FilterCntl0.InScale.

Figure 24 Extrema Select

• It is also possible to evaluate the differences between each layer (when

FilterCntlIn.Mode[1] = '1'). If difference mode is selected, new differential

layers are generated by subtracting adjacent input layers, resulting in (number

of input layers - 1) differential layers. The total number of input layers must be

specified in advance. Invalid layers are ignored.

• When FilterCntlIn.Mode[0] = '0', the original data is output. When

FilterCntlIn.Mode[0] = '1', the evaluated result is output instead.

• Since the top and bottom layers do not lie at the center of any three-layer

group, their evaluation result is not always true. However, virtual upper and

lower layers can be defined to allow evaluation at the top and bottom layers.

• The scan starts from the lowest layer, and evaluation stops once a maximum

or minimum is detected. However, it is also possible to extract both minimum

and maximum values simultaneously if they exist in different layers.

• Layers 0 through 3 correspond to SrcIn pixels, and Layers 4 through 7

correspond to SrcOut pixels. In both SrcIn and SrcOut, each ARGB

component corresponds to a separate layer. If the number of layers is 4 or

fewer, configuration for SrcOut is not required.

3x3

Max 8

3x3x3's core(red) is extrema -> select layer1
3x3x3's core(red) is extrema -> select layer2

3x3x3's core(red) is extrema -> select layer3

64

Layer Number Description

0(bottom layer） SrcIn ElementB

1 SrcIn ElementG

2 SrcIn ElementR

3 SrcIn ElementA

4 SrcOut ElementB

5 SrcOut ElementG（Ver.C）

6 SrcOut ElementR（Ver.C）

7 SrcOut ElementA（Ver.C）

• When performing difference operations, the results are obtained from a

maximum of (number of layers − 1) differential layers. If difference operations

are not performed, the input data itself is used instead.

• Using the “Coordinate Extraction (Steal)” feature described later, only the

coordinates where a minimum or maximum is detected can be written to

memory. Additionally, when writing the corresponding XY coordinates, the layer

number in which the minimum or maximum was found can be embedded into

the upper 4 bits of each coordinate.

• The flag used in Steal becomes true when a local minimum or maximum is

detected.

3.11.6. Bitmap Filter（SrcIn）

• The Distance mode of the Bitmap filter is a distance filter that operates on a

25x25 1-bit bitmap. It encodes the nearest position where the value is true

('1') from the center pixel into an 8-bit label. The search begins from the origin

(0) and proceeds sequentially. If no '1' is found, the output is set to 0xFF.

• In nearest-neighbor searches, positions with the same distance that are line-

symmetric or point-symmetric are considered equivalent. Therefore, positions

categorized into 8 directional quadrants are first unified into a single

representative quadrant and then assigned a label number. For example, pixels

at relative coordinates (7,3), (3,7), (−3,7), (−7,3), (−7,−3), (−3,−7), (3,−7), and

(7,−3) are all OR-ed and treated as having the same value as the pixel at (7,3).

65

Figure 25 Integrate Nearest Pixel

• Labeling uses values from 0 to 90 and 0xFF, as shown below. Labels are

assigned starting with pixels closest to the center, with lower numbers

indicating closer positions.

Figure 26 Serial Numbering

• Set the stride and horizontal/vertical sizes as multiples of 32 (stride is

specified as value − 1).

You can select whether the bitmap data is stored MSB-first or LSB-first

within each 32-bit word (only MSB-first is supported in Ver.A).

3.11.7. Pattern Filter（SrcOut）

• The Pattern filter evaluates the truth relationship between a center value and

surrounding values within a maximum 9×9 region. The result is placed at

arbitrary positions within a 32-bit output and is treated as a SrcOut result

(SrcOut, SrcExt) that can be integrated with the SrcIn result through the

Envelope process. The input data consists of only one 8-bit component.

線対称・点対称
OR統合（→Ⅰ）

Ⅰ

ⅡⅢ

Ⅳ

Ⅴ

Ⅵ Ⅶ

Ⅷ Ⅰ

25

25

13

13

6556483924 31191496310

67574933 4026201510742

695942 50342821161285

7152 6244362923181311

64 7354453832272217

7668585143373025

78726355474135

817770615346

8480756660

86837974

888582

8987

90

12111097 86543210

12
11
10
9

7
8

6
5
4
3
2
1
0

66

• The center value’s truth evaluation is expressed in 2 bits, similar to the Mask

filter, and is based on a comparison with a specified value. The center (Center)

can be selected from the SrcOut center value, SrcIn component centers (A, R,

G, B), or a fixed value (Kernel). Kernel and Delta values are defined using

entries in the Blut:

Kernel = Blut[208]

Delta0 = Blut[210]

Delta1 = Blut[211]

Center = {SrcOut_C, SrcIn[A]_C, SrcIn[R]_C, SrcIn[G]_C, SrcIn[B]_C, Kernel}

Truth conditions for each surrounding pixel i are evaluated as:

True[i]_0 = AroundValue ≥ (Center − Delta0)

True[i]_1 = AroundValue < (Center + Delta1)

• Up to 81 (9x9) truth flags of 2 bits each—including the center—are rearranged

and mapped to any of 32 output positions (64 bits in total). The layout is

defined using Blut. For example, the first of the 32 positions references

Blut[0], which indicates which truth flag to place.

• Finally, either the logical AND of the 2-bit truth flags is taken and compressed

into a 32-bit value, or the lower 16 truth flag sets are selected and packed

into 32 bits.

• Note: the order of positions differs from the clockwise ordering used in the

Mask filter. Here, pixels are scanned sequentially starting from the top-left,

including the center point.

Blut Index Description

208 Specify position #0, 0-80

209 Specify position #1, 0-80

…

239 Specify position #31, 0-80

240 Kernel Vallue

241 Boolean Operator

67

242 Delta0 Value

243 Delta1 Value

244-255 Don’t care

Bool[3:0]（Blut[241]） Description

0 0

1 ~True0[i] & ~True1[i]

2 True0[i] & ~True1[i]

3 ~True1[i]

4 ~True0[i] & True1[i]

5 ~True0[i]

6 True0[i] ^ True1[i]

7 ~True0[i] | ~True1[i]

8 True0[i] & True1[i]

9 True0[i] ~^ True1[i]

10 True0[i]

11 True0[i] | ~True1[i]

12 True1[i]

13 ~True0[i] | True1[i]

14 True0[i] | True1[i]

15 1

68

The flag used in Steal is not generated directly. Instead, it is generated as needed by

performing element value evaluations in subsequent stages using the Extractor and

Blender.

Figure 27 Pattern Filter

3.12. Envelope Processing

• Pixel values from SrcOut can be retrieved from memory and combined with

either SrcMod (the filtered pixel values of SrcIn) or SrcOrg (the unfiltered pixel

values of SrcIn). For any given component, replacement, addition/subtraction,

or multiplication operations can be performed. This function is used for

element insertion and composition.

• The newly generated pixel is passed to the 3D CLUT (color space conversion)

after the following calculation. For each element, the operation (denoted as *

in the formula) can be selected from four types: no operation, replacement,

addition/subtraction, or multiplication. The two operands on the right-hand

side can be selected from several options, including SrcOut and constants

(e.g., PixelConst.A, R, G, B). Additionally, internally stored register values (such

as the histogram’s most frequent index, minimum value, and maximum value)

can also be referenced.

• Each component of the operands can be selected freely. However, in

operations involving SrcMod, the components of SrcMod cannot be freely

chosen. The same restriction applies to operations involving SrcOrg.

• After envelope processing, each element is represented in a 9-bit format

ranging from 0.0 to +1.0. A value of 0x100 corresponds to the maximum (1.0),

and 0x0 to the minimum (0.0).

Data

True[i]

2bit x81 2bit x32

S
e
l
/
P

a
c
k

T
ru

e
[0

]

&
T

ru
e
[1

]

2bit x16

1bit x32

8bit x81

48

47

26 27

10

24

25

9

46 23 8

45 22 7

28 29

12

2 3

11

0 4

6 5

49 50 51 52 53 54 55

30

13

14

15

16

17181920214475

76

77

78

79

80 31

32

33

34

35

56 57

58

59

60

61

62

6336

43 42 41 40 39 38

67686970717273

74 37 64

6566

1 Ext

69

new 𝑆𝑟𝑐𝑀𝑜𝑑𝐴𝑅𝐺𝐵 = Clamp

[

Abs

(

{
𝑆𝑟𝑐𝑂𝑟𝑔𝐴𝑅𝐺𝐵
𝑆𝑟𝑐𝑂𝑢𝑡𝐴𝑅𝐺𝐵

} ∗

{

1.0
𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑈𝑠𝑒𝑟𝑆𝑒𝑡)
𝐶𝑜𝑛𝑠𝑡𝐴, 𝑅, 𝐺, 𝐵
𝑆𝑟𝑐𝑂𝑟𝑔𝐴, 𝑅, 𝐺, 𝐵
𝑆𝑟𝑐𝑂𝑢𝑡𝐴, 𝑅, 𝐺, 𝐵 }

)

]

new 𝑆𝑟𝑐𝑂𝑟𝑔𝐴𝑅𝐺𝐵 = Clamp

[

Abs

(

{
𝑆𝑟𝑐𝑀𝑜𝑑𝐴𝑅𝐺𝐵
𝑆𝑟𝑐𝑂𝑢𝑡𝐴𝑅𝐺𝐵

} ∗

{

1.0
𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑈𝑠𝑒𝑟𝑆𝑒𝑡)
𝐶𝑜𝑛𝑠𝑡𝐴, 𝑅, 𝐺, 𝐵
𝑆𝑟𝑐𝑀𝑜𝑑𝐴, 𝑅, 𝐺, 𝐵
𝑆𝑟𝑐𝑂𝑢𝑡𝐴, 𝑅, 𝐺, 𝐵 }

)

]

• All elements can also be concatenated into a single 32-bit value, enabling 32-

bit accumulated addition. This addition starts with the first pixel value at the

beginning of the line and is incrementally summed. When this result is

combined with the vertical accumulation from the Blender, an integrated image

can be obtained.

• SrcOut refers to the output that bypasses the Pattern Filter. In contrast, if

SrcExt is defined as the output after applying the Pattern Filter, the mutual

relationships among the data paths of SrcMod and SrcOrg are as illustrated in

the diagram.

Figure 28 Envelope Path

ModSel[3:0]

Const0-7[7:0]

SrcInModARGB[8:0]

SrcOutOrgARGB[8:0]

OrgSel[3:0]

ModOp

new SrcModARGB[8:0]

new SrcOrgARGB[8:0]

SrcInOrgARGB[7:0]

OrgOpS
e
lA
R
G
B

0
-7

8
-1

1
1
2

-1
5

x

+

-

x

+

-

Max

Max

Signed

Abs

Clamp

Acc

OrgAllOp

S
e
lX

S
e
lA
R
G
B

1
5

-1
2

1
1

-8
7

-0
0

1
1

0

ModSelX

OrgSelX

PixelOrg

PixelMod

Op

0 in * coef

1 coef

2 min(in, coef)

3 max(in, coef)

4 in + coef

5 in – coef

6 min(in@element)

7 max(in@element)

coef

in

coef

in

Max

Signed

SrcOutModARGB[7:0]

S
e
lX

Abs

Clamp

Acc

OrgOp

ModAllOp

PixelOrg

PixelMod

AllOp

0 NOP

1
Clamp 0 if result is

negative

2 Absolute of result

3 Accumulate (32bit)

70

3.13. 3D CLUT (Color Space Conversion)

• The 3D CLUT (Color Lookup Table) is a mechanism that generates new pixel

values by referencing a lookup table using three pixel components as indices.

Depending on the number of reference indices used, it supports 1D, 2D, 3D,

and Binary modes. As the transformation is table-based, it can perform not

only color space conversions but also arbitrary functions such as L2 norms or

trigonometric functions. Precision decreases as the number of reference

indices increases (1D > 2D > 3D).

• Both outputs from Envelope Processing, SrcMod and SrcOrg, can individually

enable or disable color space conversion. However, if both conversions are

enabled, performance decreases from 1 pixel/cycle to 0.5 pixels/cycle.

• When frComp is activated, the reference tables are automatically loaded into

internal SRAM by the Initiator. Two sets of caches are maintained for the

reference tables. On a cache miss, 16KB of data is loaded per miss. If more

than two commands use the 3D CLUT, frequent SRAM reloading will occur,

potentially degrading performance.

• In 2D and 3D modes, input components are limited to 8 bits. Therefore, if a 9th

bit exists to represent negative values, a folding process is required to convert

9-bit values into 8-bit format (PixelCntl*.Inword). This step is not necessary in

1D or Binary modes.

• Specific components can be selectively converted, as specified by ClutCntl.En.

• It is possible to combine two components and output them as a single 16-bit

value with higher precision.

3.13.1. 1D Mode (Standard)

• Each ARGB component independently references a table. The indices are 9-

bit values ranging from the minimum -1.0 (0x101) to the maximum 1.0 (0x100),

requiring a configuration of 512 entries × 4 components. No interpolation is

performed.

• This mode is used for per-component conversions such as gamma correction.

Unlike other modes, the A component is also referenced during conversion.

• Two table entries can be referenced in 1D mode, and the selection is

determined by filter flags.

71

3.13.2. 1D Mode (Binary)

• When ClutCntl.Sel = '1' in 1D mode, a binary lookup is performed using n bits

from RGB components (R uses only its LSB). This references a 128Kbit table

(4K × 32-bit), and outputs a result of size 128K ÷ 2^n bits. (In Ver.AB, n =

16 or 17; in Ver.C, n = 12–17.)

• If the result is 1 bit, it is expanded to 9 bits and copied to ARGB. If the result

is 2 bits, the LSB is copied to RGB, and the MSB to A. When expanding to 9

bits, the MasterCtrl.Max value of each component determines the expansion: if

'1', it becomes 0x100; if '0', it becomes 0xff.

3.13.3. 2D Mode

• A 4K-word table is referenced using the upper 6 bits each of the R and B

components (total 12 bits). Four neighboring values are retrieved from the

table, and bi-linear interpolation is performed using the lower 2 bits of R and B

as weights. Interpolation can be enabled or disabled via ClutCntl.Sel.

• Negative input values are rounded to zero. To convert negative values, use the

folding option to reduce 9-bit values into 8-bit (i.e., discard LSB after shifting).

The value 0x100 (representing 1.0) is automatically converted to 0xff, so no

additional handling is required.

• Although only R and B are referenced, the result is output to all components.

3.13.4. 3D Mode

• A 4K-word table is referenced using the upper 4 bits each of the RGB

components (total 12 bits). Eight neighboring values are retrieved from the

table, and tri-linear interpolation is performed using the lower 4 bits of RGB as

weights. Interpolation can be enabled or disabled via ClutCntl.Sel.

• Handling of negative inputs is the same as in 2D mode (see Handling of

Negative Input in 2D Mode).

• Only RGB components are referenced, but the result is output to all

components. For linear transformations such as RGB to YUV conversion, the

precision is within about 0.5 LSB error compared to dedicated hardware.

72

Figure 29 3D Clut Data Path

3.14. Pixel Processing (Extractor and Blender)

• Pixel processing is divided into two stages: the Extractor for preprocessing

and the Blender for postprocessing. The Extractor mainly performs

binarization, while the Blender handles operations between pixels.

• SrcModData and SrcOrgData, which are the results of color space conversion,

are used as source data. Additionally, a new memory access is performed to

retrieve destination data (DstInData). A total of three data sources are used in

the composition process.

• The DstOutMask generated by the Extractor can be used to mask memory

writes. When Steal is enabled, this function can be disabled via StealCntl.Mask.

GR B

00 0 0+1 0

00 +1 0+1 +1

+10 0

+10 +1 +1+1 +1

+1+1 0
Tri-linear

Interpolation

Envelope

Extractor
Color

Lookup

Table

4 4

73

Figure 30 Extractor and Blender

3.14.1. Extractor

• As shown in Figure 33, values less than or equal to PixelKeyLow are converted

to the original pixel value, values greater than or equal to PixelKeyHigh are

converted to 0xFF (0x100), and values in between are converted to 0. The

reference pixel can be selected from either SrcMod or SrcOrg. Additionally,

the inverse of the selected source (i.e., if SrcMod is selected, SrcOrg is used,

and vice versa) can also be selected.

• Operations for masking memory writes are also supported.

Extractor Blender

ALUOpALU[5:0]

0xff or MulConst0-3[7:0]

Destination
Pixel

Source Pixel

KeyHigh
[31:0]

DstOutMask
[3:0]

DstOutData
[31:0]

DstInData
[31:0]

Region
Check

Color
Region

Condition

DitherMatrix

Mask
Region

Condition

SrcOrg
Data

[35:0]

KeyCRC
Cond0-2

KeyMRC
Cond0-2

En
[3:0]

Lookup
OpLut

OpCarry

SrcMod
Data

[35:0]

Sel

Sel

KeyLow
[31:0]

Sel

KeyLowSel

KeyHighSel

SrcASel

DstASel

Sel

Sel

Sel

Blut

[0] [1]

[0] [1]

-

+

1

0

1

0

1

0

0

1

0

1

1

0

Sel
1

0

Max

Max

Max

Max: indicates bit expansion function (0xff→0x100)

Cmp Cmp
SrcCmp DstCmp

SrcBSel
[3:0]

DstBSel
[3:0]

Inv
DstInvSrcInv

Sel

BlendEn

0

1

A B B A

Inv

Sel Sel

1.0 1.0

SrcOne DstOne
010 1

Sel

Sel

KeyCRC
CondSel

KeyMRC
CondSel

X

Max

X

Cross

Sel Sel

0-7 8-11 12-15 0-7 8-11 12-15

Cmp

+

Dither

Acc
OpCarryA

Shift
OpALU[5:0]

74

Figure 31 Pixel Extraction Example

• The lower threshold PixelKeyLow and the upper threshold PixelKeyHigh can be

set not only as fixed values but also using either SrcMod or SrcOrg. This

allows for applications such as adaptive binarization.

Mode KeyHigh KeyLow

Fixed Specified Value Specified Value

SrcMod
SrcMod Data + Specified

Value

SrcMod Data – Specified

Value

SrcOrg
SrcOrg Data + Specified

Value

SrcOrg Data – Specified

Value

• The combination of the element used for evaluation and the element to be

modified is freely configurable. For example, you can define a region based on

the lower and upper thresholds of element A, and apply the resulting operation

to the RGB elements.

3.14.2. Blender

• The Blender processes data in the following sequence: pixel and element

selection, division and complement, multiplication, ALU operations (e.g., alpha

blending), function conversion, and error diffusion. The element used for alpha

blending can be freely selected.

Input value

0 255 KeyLow KeyHigh

Region0
Set Cond=0

0

255

X

X

Input value

0 255
0

255

Region1
Set Cond=1

Region2
Set Cond=2

Output valueOutput value

Ex.

75

• Pixel and element selection, along with division and complement operations,

are used to generate operands for multiplication. Using the Source data

generated by the Extractor and the Destination data retrieved from memory,

Operand A and Operand B are determined, and two multiplication operations

are performed.

Operand

(Source)
Source Selection

A

Extractor :

SrcMod The output is as described on the

left.
Extractor : SrcOrg

B

Initiator
A constant, its complement, or its

reciprocal

Context
UserSet or Min/Max, or their

complement or reciprocal

Extractor :

SrcMod Any element of the above-

mentioned output, or its

complement or reciprocal
Extractor : SrcOrg

Memory

Operand

(Destination

)

Source Selection

A

Memory

The output is as described on the

left.

Extractor :

SrcMod

Extractor : SrcOrg

76

B

Initiator
A constant, its complement, or its

reciprocal

Context
UserSet or Min/Max, or their

complement or reciprocal

Extractor :

SrcMod Any element of the above-

mentioned output, or its

complement or reciprocal
Extractor : SrcOrg

Memory

• In the ALU, element-wise binary operations are performed using the two

results generated by the multipliers.

ALU

Operation
Description

Add Addition

Sub Subtraction

Absolute Absolute difference

Boolean Bitwise operations (16 types)

Mul Multiplication

Min Minimum value

Max Maximum value

Flag Comparison result（==, !=, >, <, <=, >=）

• Up to the ALU input stage, operations are performed using 9-bit signed values

per element. After the ALU output, each element is reduced to 8 bits. The

lower 8 bits of the ALU result are directly output. If clamping is required—

where negative values are clamped to 0, and values equal to or greater than

0x100 are clamped to 0xFF—then clamping-enabled addition or subtraction is

used in the ALU.

• The carry-out signal generated by the ALU can be propagated in the order of

BGRA elements. For example, to implement a 16-bit accumulator, elements B

and G, and elements R and A can be grouped together, allowing the carry

signal to propagate within these pairs. If only the upper 8 bits (elements G and

77

A) of a 16-bit frame input are set to 0, accumulated addition or subtraction

using elements B and R becomes possible.

• A 32-bit accumulator is available for each line processing cycle. It is reset to 0

at the beginning of the line, and accumulates and outputs 32-bit ARGB values

until the end of the line.

• The output of the adder/subtractor can be passed through a user-defined

Blender Lookup Table (Blut) to perform custom transformations such as

logarithmic or square root functions. Although the Blut is also used by various

filters, it cannot be shared across multiple functions simultaneously.

• BG elements can be processed as half-precision floating-point data for

accumulation and multiplication (Ver.C).

• Simple error diffusion is applied to the final output pixel using a Dither Matrix

(DitherLow, DitherHigh). The Dither Matrix is a user-definable 4×4 matrix of

signed 4-bit values. Dither coefficients are automatically selected using the

lower 2 bits of the destination X and Y coordinates (4 bits total). The values

are configured via the Dither0 and Dither1 registers.

Figure 32 Dithering

3.15. Coordinate Extraction (Steal)

• Whether to write a given coordinate to memory is determined based on the

filter processing result (flags) and the Extractor result (DstOutMask). Note

that the Extractor mask is also used by the Blender for memory write masking.

To enable the Extractor mask only for Steal and disable it for the Blender, set

StealCntl.Mask.

GR B

Y

A

D00

D10

D20

D30

D01

D11

D21

D31

D02

D12

D22

D32

D03

D13

D23

D33

X

+

Sign

Extend

(4bit)

D12

(4bit)

+++

78

• Finally, based on the evaluation result, the corresponding coordinates are

sequentially stored in memory. Since serial address management is required,

context read/write must occur with each fragmentation process (COCntl.Base

and COCntl.En).

• The total number of extracted coordinates is written to word 0 of the context.

If the context is not cleared beforehand (COCntl.Clr), counting will continue

from the previous value, so care must be taken.

• Similarly, the evaluation result is written to word 1 of the context. If the result

is true, the value 0xFFFFFFFF is written; if false, 0 is written. Once a pixel is

evaluated as true, it will not become false again until the context is cleared.

• By using the polygon context reference in one dimension, the total number of

extracted coordinates can be set from the context, and the extracted

coordinates can be transformed via Remap for further processing.

3.16. Histogram (Ver.BC)

• The results of the Blender can be accumulated into histograms for each

element. The accumulated values are expressed as 24-bit integers. Due to

saturation logic, the count will never exceed the maximum representable value

(2^24 - 1). The accumulation can either be cleared at the start of processing

or continued from the previous state without resetting.

Figure 33 Histogram Counter and Table

• When processing of a single frame is completed, the histogram results can be

written to memory. The selection of components and the number of

GR BDestination

Blender

Counter

Table

256Entry

8

+1

A

Index

Enable

+1

Enable

8

Index

DisableDisable

79

components to be written can be configured freely. Additionally, results can be

written sequentially by region using a zigzag scan of the indices. Note that

each polygon is counted as one frame.

• Similarly, at the end of processing for a frame, the minimum and maximum

values for each component can also be written to memory as context data.

These context values can be referenced in subsequent processes such as

Polygon, Envelope, or Blender.

• In memory, the results are basically stored sequentially by component in the

order of processing. For example, when acquiring histograms of only

components B and A for each frame, the histogram of component B is written

first, followed by that of component A. The number of index entries

(2HistCntl1.Num) is configurable.

• Histogram results are aggregated per unit (HistCntl0.Unit). For example, to

aggregate per frame (XY), set HistCntl0.Unit = '1'; to aggregate across Z-

indexed frames (XY × Z), set HistCntl0.Unit = '2'.

• The following is an example of acquiring histograms using a zigzag scan. A

small area (XY) is processed for Z × W regions. For each small area, a

histogram is generated for RGB components only, and written to memory

according to the specified number of indices. Each small area's histogram is

written in the order of component B to R, and this is repeated Z times. After

writing histograms for all Z regions, the histogram stride for Z updates

(HistCntl0.Stride) is applied to begin the next set of Z histograms. This

process is repeated W times. If the results are to be tightly packed, the stride

should be set to Z (or technically Z - 1).

Figure 34 Histogram of Zigzag Scan

3.17. Use of Blut

Z

X

Z Z Z
Z

Z

Z
Y

W

Z

Z

2Num

Stride+1

80

• The Blut (Blender Lookup Table) is referenced by both the Blender and

various Filters. Since overlapping data cannot be configured when accessed

simultaneously, mutual exclusivity is required. In principle, the Blender and

Filters cannot be configured to use the Blut at the same time. However, the

Pattern Filter and other Filters can be configured simultaneously.

• The approximate usage range of the Blut is outlined below. For detailed

information, please refer to the specifications of each respective function.

3.18. Address Masking

• In frame memory addressing, it is possible to fix the upper bits of the address

while allowing only the lower bits to vary (***Base.Wrap). This enables data

81

exchange between engines to fit within the capacity of a ring buffer rather

than the full spatial capacity of a frame buffer.

Figure 35 Ring Buffer Control by Address Mask

• The address mask enables variation of the address up to a specified lower bit

position, while the upper bits retain the value set by ***Base.Base. Therefore,

to make effective use of this feature, the product of the image start address,

the line update stride, and the number of valid lines must be a power of two.

• Ring buffer management is controlled using indices provided to frComp. It

monitors the producer and consumer indices and performs conflict-free ring

buffer control (similar to FIFO pointer management). When using pss, ring

buffer control between engines can be automatically managed through link-

based coordination.

Write

Write Read

Read

Wrap
Wrap

Base

Address

Base

Address

Address=X

Address=Y

frComp

frComp

frComp

frComp

Address=X mod Wrap

Address=Y mod Wrap

82

3.19. Input/Output Format

• The pixel data in memory supports the following formats. Bits and words are

packed starting from the MSB in memory.

Bit/Word Component Description

8
A or R or G or B

or Gray

• On read, values are assigned to

all elements of the ARGB pipeline;

on write, only a selected element

is written.

• The maximum value is treated as

a fixed-point number less than

1.0. For the value 0xFF, it is

selectable whether to interpret it

as 1.0 or 255/256.

16

ARGB or RGB

• For RGB, the 5, 6, and 5-bit

values are expanded to 8 bits

respectively for read/write

operations. The A (alpha)

component is assigned a

grayscale value via a simplified

calculation.

• If there are insufficient bits in the

LSB direction, the MSB-side bits

are duplicated to fill the gap.

A or R or G or B

or Gray

（Ver.C）

• Half-precision floating-point

input

• A fixed-point format using the

lower 10 bits with the 5-bit

exponent set to 0 (it is also

possible to specify 8 bits per word

and assign the lower 8 bits).

24
RGB

（Ver.C）

• RGB is assigned 8, 8, and 8 bits

respectively for read/write

operations. The A (alpha)

component is assigned a

grayscale value via a simplified

calculation.

32 ARGB

• ARGB is assigned 8, 8, 8, and 8

bits respectively for read/write

operations.

83

Figure 36 Pixel Format(ARGB）

The coordinate data in memory read by the Remapper supports the following

formats. The same formats apply to coordinate data written out from the filter

stage.

Bit/Word Component Description

32 X, Y

• X and Y coordinates packed into

a 32-bit value

• Two's complement

representation, with X and Y

each ranging from -32,767 to

32,767

• 0x8000 is treated as an escape

value (see relevant section for

details)

• To set subpixel precision, the

fractional bit position can be

specified via the Command List

Figure 37 Coordinate Format (X, Y)

When the coordinate data read by the Remapper is an escape value, the following

operations are performed (excluding texture conversion). Depending on the

settings, escape values can also be ignored.

8Bit/Word 8

R

8

G

8

B

8
24Bit/Word

31 24 16 8 0

A

8

R

8

G

8

B

8
32Bit/Word

R

5

G

6

B

5
16Bit/Word(565)

S

1

Exp

5

Mantissa

10

16Bit/Word

(Float Binary16)

31 24 16 8 0

Y

16

X

16
32Bit/Word

84

 X≠Escape X = Escape

Y≠Escape

［Normal Mode］

• (X,Y)Operate as

Coordinates

[Copy Mode]

・For the first coordinate in

a line:

If absolute mode is set

(MasterCntl.DstRemap /

SrcRemap = '0'), the

fallback coordinate is (0, Y).

If relative mode is set

(MasterCntl.DstRemap /

SrcRemap = '1'), the

fallback coordinate is (0, 0).

・For coordinates in the

middle of a line, the most

recent valid result is used.

Y = Escape

［Zero Mode］

• Absolute Value

Setting

• MasterCntl.

DstRemap

• / When SrcRemap =

'0', intermediate

coordinates (X, Y)

are set as relative

values.

• MasterCntl.DstRema

p / SrcRemap ='1'で

(0,0)

[Default Mode]

・Treated as the coordinate

(0x8000, 0x8000) during

operation

・For the source path, the

default value in the cache

is used (note that escape

values may be altered by

matrix transformation)

・For the destination path, a

pixel mask is applied (no

write operation is

performed)

• The transformation matrix referenced by Affine/Homography transformations

supports the following formats. The floating-point format (Float) used is a

subset of IEEE 754 representation. NaN and Infinity are not supported.

85

Bit/Word Component Description

32 Matrix Element

• Each Element of the 3×3 Matrix

(
𝑢
𝑣
𝑤
) = (

𝑚00 𝑚01 𝑚03
𝑚10 𝑚11 𝑚13
𝑚20 𝑚21 𝑚23

)(
𝑋
𝑌
1
)

(𝑋′
𝑌′
) = (

𝑢/𝑤
𝑣/𝑤

)

Figure 38 Matrix Format (M)

• The coefficients referenced by the 2D Filter, and the inputs referenced by the

2F Filter, support the following formats. The floating-point format (Float) used

is a subset of IEEE 754 representation. NaN and Infinity are not supported.

• In the 2D Filter, values are converted to 10-bit fixed-point format before

multiplication, so the lower 6 bits (beyond the valid range) are set to 0. Please

round the mantissa or otherwise adjust the floating-point values in advance

according to the expected significant digits.

Bit/Word Component Description

16 Coefficient

• The 2D Filter consists of the

following 5×5 coefficients.

(

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4
𝑐5 𝑐6 𝑐7 𝑐8 𝑐9
𝑐10 𝑐11 𝑐12 𝑐13 𝑐14
𝑐15 𝑐16 𝑐17 𝑐18 𝑐19
𝑐20 𝑐21 𝑐22 𝑐23 𝑐24)

• Only values in the range from -2.0

to 2.0 are supported (excluding -

2.0 and 2.0).

• If the exponent (Exp) is 0, bits

[9:2] of the mantissa represent

the fractional part of the fixed-

point value.

31 24 16 8 0

S

1

Exp

8

Mantissa

23

32Bit/Word

(Float Binary32)

86

• Color Lookup Table data, whether accessed via registers or from memory,

supports the following formats.

Bit/Word Component Description

32 ARGB
• Referenced as ARGB with 8, 8, 8,

and 8 bits assigned respectively.

Figure 39 Color Lookup Table Format (RGB)

Vertices in the Command List support the following formats.

Bit/Word Component Description

32 X, Y

• X and Y coordinates packed into

a 32-bit value

• Unsigned representation, with X

and Y each ranging from 0 to

65,535

32 Size • 32-bit size representation

Figure 40 Vertex Format (X, Y)

The Dither register supports the following formats.

31 24 16 8 0

A

8

R

8

G

8

B

8

32Bit/Word

（Register）

S

1

Exp

5

Mantissa

10

31 24 16 8 0

16Bit/Word

(Float Binary16)

31 24 16 8 0

Y

16

X

16
32Bit/Word

87

Bit/Word Component Description

4 Matrix Element

• Each element of the following

4×4 matrix is represented using

4 bits, and elements from d00 to

d13 and from d20 to d33 are

packed into 32 bits.

• Select either the destination

coordinate X or Y, and add Δ in

two's complement form to the

lower bits of the pixel.
∆

= 𝑠𝑒𝑙 (

𝑑00 𝑑01 𝑑02 𝑑03
𝑑10 𝑑11 𝑑12 𝑑13
𝑑20 𝑑21 𝑑22 𝑑23
𝑑30 𝑑31 𝑑32 𝑑33

)

Figure 41 Dither Matrix Format (D)

3.20. Internal Computation

• The internal coordinate representation (between remapping and matrix

transformation) uses unsigned 8-bit integers plus 6-bit fractional fixed-point

format.

• Computation precision in the 2D Filter is fixed-point with a maximum of signed

15-bit integer plus 4-bit fraction.

Computation precision in the 2F Filter is half-precision floating-point.

• Computation precision in the 3D CLUT is fixed-point with a maximum of

unsigned 8-bit integer plus 8-bit fraction.

• The precision of pixel data in the Extractor, Blender, and other stages is

typically fixed-point signed 9-bit per component. Two’s complement is used,

but 0x100 represents a positive value of 1.0.

Pixels output from the Blender are forcibly clamped to unsigned 8-bit.

For BG elements, half-precision floating-point can be used for accumulation

and multiplication (Ver.C).

31 24 16 8 0

32Bit/Word

D13

/D33

4

D12

/D32

4

D11

/D31

4

D10

/D30

4

D03

/D23

4

D02

/D22

4

D01

/D21

4

D00

/D20

4

88

3.21. Connection with pss

• The iAddr signal output from pss is used to fetch the Command List from

memory. See the section on the Command List for further details.

If pss is not present, access the pss interface directly.

• The iIndex signal output from pss, combined with parameters in the Command

List, is used to compute the starting addresses of the input and output image

data.

The initial address is calculated using the following formula, where:

o X, Y, Z are 0th, 1st, and 2nd-order coordinates,

o StrideX is the step size for Y-axis changes,

o Len is the size in bytes per pixel,

o Buf is a switch indicating the front/back buffer as specified by the

address-setting command,

o The Plus term is used for double-buffering (Ver.C): the LSB of the Z

coordinate is used to offset by one screen's worth (StrideX × WidthY),

enabling double-buffer control.

StartAddress = (BaseAddress + X + StrideX × Y + Plus) × Len
Plus = StrideX ×WidthY × (Z[0] ⊗ Buf)

• Scanline processing is performed starting from coordinates X and Y for the

transfer length specified by the iDelta signal output from pss. The iDelta signal

generally defines the unit of fragmentation. The end of a line may result in a

partial segment. It is also possible to process an entire line at once.

• The least significant bit of bit 4 in the address (iAddr) signal output by pss is

not used as part of the actual address value. Therefore, the Command List

should be stored in memory in 32-byte aligned units.

• Conversely, this LSB can be set to '1' to provide initialization hints to frComp.

When such a hint is given, a cache clear signal (iRxw) is deasserted during

memory read access. External memory systems should monitor this signal and

clear any read-only caches accordingly. This is not required for read/write

caches. Note that the Flush flag in the Command List (present in each

memory access register) must also be set.

• The iCID signal serves as a tag to specify registers maintained within the

same frame. A fixed value may be used, but doing so may result in

fragmentation limitations for some functions. Refer to the precautions for

fragmentation with ID 0. If fragmentation is not required, fixed values present

no issue.

89

3.22. Performance

• The system operates at 1 pixel per cycle, regardless of the number of

components per pixel. However, in the 2D Filter, cache access—due to

simultaneous access to multiple pixels—can become the primary memory

performance bottleneck.

• Memory access wait states can degrade performance.

• Waits may occur due to the ratio of required memory bandwidth to the

available memory bus bandwidth.

• Waits may also result from the system's inability to absorb read latency (i.e.,

the time from address request to data acknowledge).

• A high-bandwidth memory bus is required. However, since the same data is

often read multiple times, using a centralized cache system can significantly

improve performance. To maintain cache coherence, the system outputs

external flush signals (mrRxw / mcRxw).

90

4. Register Description

4.1. Overview

• All registers are accessed via the control bus.

• Some registers may affect pipeline behavior or performance, so the timing of

configuration must be handled carefully.

• The following access types are used in the register descriptions:

• R — Read Only (writes have no effect)

• R/W — Read / Write

• R/WC — Read / Write, auto-cleared after read

• Do not access Reserved registers, and always write '0' to Reserved fields.

• In address and data notations, 'x' indicates a don't care value.

4.2. Definition

Address Register Name Description

0000_0000 Reset Reset Control

0000_0004 System System Control

0000_0100 DitherLow Dither Control (Lower)

0000_0104 DitherHigh Dither Control (Upper)

4.3. Details

4.3.1.1. Reset Register

 [Address: 0x0000_0000]
31 28 24 20 16 12 8 4 0

Reset
Name Type Default Description

Reset R/W0 Synchronous reset: When set to '1', the internal

reset state is activated and will

automatically be cleared. Unlike the reset_n

signal, the contents of other registers are

preserved.

Upon setting '1', the rstReq signal is immediately

asserted. This signal notifies external systems

91

that frComp has entered a reset state and

requests appropriate handling. Once the external

handling is complete, the rstAck signal must be

asserted (if no action is required, rstAck should

always be held at '1').

After these procedures are completed, the Reset

automatically returns to '0'.

4.3.1.2. System Register

 [Address: 0x0000_0004]
31 28 24 20 16 12 8 4 0

GateOff
Name Type Default Description

GateOff R/W 0 Gated Clock Off Mode: When set to '1', all

bits of the gate signal are fixed to '1'.

4.3.1.3. DitherHigh/Low Register

 [Address: 0x0000_0100 - 0x0000_0104]
31 28 24 20 16 12 8 4 0

D20[3:0]

D01[3:0] D00[3:0]

D33[3:0] D32[3:0] D31[3:0] D30[3:0] D23[3:0] D22[3:0] D21[3:0]

D13[3:0] D12[3:0] D11[3:0] D10[3:0] D03[3:0] D02[3:0]

Name Type Default Description

DYX R/W 0 Sets the dithering matrix used by the

Blender.

In DYX, Y represents the row and X the

column, both determined by the lower 2 bits

of the destination coordinate.

DYX is expressed in 4-bit two's complement

format. It is sign-extended to 4 bits (MSB)

and added to each component.

This is used when dithering is applied in the

ALU stage of the Command List.

4.3.1.4. BayerMask0-3 Register

 [Address: 0x0000_0140 – 0x0000_014c]
31 28 24 20 16 12 8 4 0

Mask5 Mask4

Mask7 Mask6

Mask0Mask1

Mask3 Mask2

92

Name Type Default Description

Maskn R/W 0 Sets a 4×4 Bayer mask pattern in 16-bit

units before Filter processing.

4.3.1.5. Utility Register

 [Address: 0x0000_0200]
31 28 24 20 16 12 8 4 0

DisableDstMask

DisableOutEscape

DisableOutPrec

DisableInEscape

DisableInPrec

DisableCLUTRound

DisableCLUTMin

DisableCLUTMax

DisableExpMax

DisableBoolMax

DisableCarry

DivideZero

Name Type Default Description

DisableDstMask R/W 0 In the Destination path, setting to '1' disables

masking.

DisableOutEscapeR/W 0 In OutRemap, setting to '1' ignores escape

codes.

• DisableOutPrec(注) R/W 0 In OutRemap, setting to '1' disables

precision correction for 1×2 and 2×1

formats.

DisableInEscape R/W 0 In InRemap, setting to '1' ignores escape

codes.

DisableInPrec(注) R/W 0 In Remap, setting to '1' disables precision

correction for 1×2 and 2×1 formats.

DisableCLUTRoundR/W 0 In CLUT, setting to '1' disables rounding in

each result.

DisableCLUTMin R/W 0 In CLUT, if the binary computation result is

93

0xFF, it is forcibly set to 0x100.

DisableCLUTMax R/W 0 In CLUT, even if the normal computation

result is 0xFF, it is not forcibly set to 0x100.

DisableExpMax R/W 0 In Blender :

0: The maximum value of the fp16 exponent

is set to 0x1F.

1: The maximum value is limited to 0x1E.

DisableBoolMax R/W 0 In Blender, setting to '1' disables forced

conversion of

 Boolean algebra input 0x100 to 0xFF.

DisableCarry R/W 0 In Blender, setting to '1' clears the carry

between operations in the order A ← R ← G

← B.

DivideZero R/W 0 In Blender, when division by zero occurs: 0 is

treated as 0.0, and 1 is treated as 1.0.

(Note): In SrcRemap and DstMap, if the mapping data format is 32-bit single-precision

floating-point, the setting must be '1' to disable precision correction.

94

5. Command List Description

5.1. Overview

• The Command List is stored in memory in 256-byte units. The starting

address of the Command List is indicated by the iAddr signal output from pss.

After startup, frComp fetches the Command List and loads it into internal

registers.

• Each stage in the pipeline independently manages the necessary parameters in

alignment with its timing. This allows seamless execution of different Command

Lists without requiring synchronization or monitoring of completion status from

pss.

• Reserved commands and fields must always be set to '0'.

• The listed addresses are relative to the address output by pss. They must be

aligned to 16 bytes.

5.2. Definition

Address Command Name Description

00 MasterCntl Master Control

04 Vertex0 Coordinates of Vertex 0

08 Vertex1 Coordinates of Vertex １

0c Vertex2 Coordinates of Vertex ２

10 PixelCntlB Pixel Control (B Component)

14 PixelCntlG Pixel Control (G Component)

18 PixelCntlR Pixel Control (R Component)

1c PixelCntlA Pixel Control (A Component)

20 PixelKeyCRC Pixel Key Color Range Control

24 PixelKeyMRC Pixel Key Color Mask Range Control

28 PixelKeyLow Pixel Key Color Reference (Lower)

2c PixelKeyHigh Pixel Key Color Reference (Higher)

30 PixelOrg
Pixel Control (Post Non-Filter Processing

Path)

34 PixelMod
Pixel Control (Post-Filter Processing

Path)

95

38 PixelDefault Pixel Default Value (ARGB)

3c PixelConst Pixel Constants (C0, C1, C2, C3)

40 SrcInInfo Source Input Information

44 SrcInBase Source Input Base Address

48 SrcOutInfo Source Output Information

78 SrcOutBase Source Output Base Address

50 SrcMapInfo Source Mapping Information

54 SrcMapBase Source Mapping Base Address

58 SrcSize Source Region Size

5c SrcOffset Source Coordinate Offset

60 DstInInfo Destination Input Information

64 DstInBase Destination Input Address

68 DstOutInfo Destination Output Information

6c DstOutBase Destination Output Address

70 DstMapInfo Destination Mapping Information

74 DstMapBase Destination Mapping Base Address

78 DstSize Destination Region Size

7c DstOffset Destination Coordinate Offset

80 CICntl Context Input Control

84 COCntl Context Output Control

88 HistCntl0 Histogram Control 0

8c HistCntl1 Histogram Control 1

90 ClutCntl Clut（Color Lookup Table） Control

94 BlutCntl Blut（Blend Lookup Table） Control

98 StealCntl Coordinate Extraction Control

9c AffineCoef0
Matrix Transformation Coefficient（0 行 0

列）

a0 AffineCoef1
Matrix Transformation Coefficient（0 行 1

列）

a4 AffineCoef2
Matrix Transformation Coefficient（0 行 2

列）

a8 AffineCoef3
Matrix Transformation Coefficient（1 行 0

列）

ac AffineCoef4
Matrix Transformation Coefficient（1 行 1

列）

b0 AffineCoef5
Matrix Transformation Coefficient（1 行 2

列）

b4 AffineCoef6
Matrix Transformation Coefficient（2 行 0

列）

96

b8 AffineCoef7
Matrix Transformation Coefficient（2 行 1

列）

bc AffineCoef8
Matrix Transformation Coefficient（2 行 2

列）

c0 FilterCntl0 Filter Control 0

c4 FilterCntl1 Filter Control 1

c8 FilteCoef00/FilteTable Filter Coefficients 00 Option

cc FilteCoef01/FilteTable Filter Coefficients 01 Option

d0 FilteCoef10/FilteTable Filter Coefficients 10 Option

d4 FilteCoef11/FilteTable Filter Coefficients 11 Option

d8 FilteCoef12/FilteTable Filter Coefficients 12 Option

dc FilteCoef13/FilteTable Filter Coefficients 13 Option

e0 FilteCoef20/FilteTable Filter Coefficients 20 Option

e4 FilteCoef21/FilteTable Filter Coefficients 21 Option

e8
FilteCoef22/FilterCent

er
Filter Coefficients 22 Option

ec
FilteCoef23/FilterArou

nd
Filter Coefficients 23 Option

f0
FilteCoef24/FilterRepl

ace
Filter Coefficients 24 Option

f4 FilteCoef25 Filter Coefficients 25

f8 FilteCoef26 Filter Coefficients 26

fc FilteCoef27 Filter Coefficients 27

5.3. Details

5.3.1.1. MasterCntl Command

 [Address: 0x00]
31 28 24 20 16 12 8 4 0

DstOp SrcOp

DstRSI SrcRSI

DstRead SrcUnread

DstAffine SrcAffine

DstRemap[1:0] SrcRemap[1:0]

DstScan[1:0] SrcScan[1:0]

Util[3:0] Shape[3:0] BoxY[3:0] BoxX[3:0]

Name Description

Util[3:0] Specify special processing.

97

Util[3] Description

0

The intermediate coordinates transformed by

Shape and DstScan become the Destination

coordinates.

1

The coordinates generated by the Destination

Remapper are used as the Destination

coordinates.

Util[2] Description

0 Normal Output Mode.

1

Planar Output Mode

Since this mode uses DstInInfo, setting

PixelCntl.BlendEn is prohibited.

Each bit of DstInInfo[3:0] enables output for

an arbitrary plane among the four available

planes:

• Bit 0: Enables an 8-bit element plane

using DstInBase.Addr[31:6] as the base

address.

• Bit 1: Enables an 8-bit element plane

by adding DstInInfo[23:4] to the upper

20 bits of the base address.

• Bit 2: Enables an 8-bit element plane

by combining {DstInBase[11:0],
DstInInfo[31:24]} as the upper 20 bits

of the base address.

• Bit 3: Enables an 8-bit element plane

by using DstInBase[31:12] as the upper

20 bits of the base address.

Util[1] Description

0 -

1

Double Buffer Mode

SrcIn and SrcOut:

If Src*.SZ is '1', the buffer capacity,

calculated as (Src*Info.Stride + 1) ×
SrcSize.WidthY, is added based on the parity

of the Z-coordinate. Src*.Rdc[2] determines

the parity: '0' for odd, '1' for even.

98

Src*.SZ and Src*.Rdc[2], which affect other

functions, are forcibly set to 0.

DstIn and DstOut:

If Dst*.SZ is '1', the buffer capacity,

calculated as (Dst*Info.Stride + 1) ×
DstSize.WidthY, is added based on the parity

of the Z-coordinate. Dst*.Rdc[2] determines

the parity: '0' for odd, '1' for even.

Dst*.SZ and Dst*.Rdc[2], which affect other

functions, are forcibly set to 0.

Util[0] Description

0 -

1

Performs unsigned data maximum value

extension. Values are set in the order of ARGB

from the MSB.

When set to '1', data with a value of 0xFF is

treated as 0x100 (i.e., 1.0).

This applies to:

• Blender inputs

• ARGB values of PixelKeyHigh,

PixelKeyLow, and PixelConst
• Inputs to the 2D Filter and Non-linear

Filter

• Reference data for the 3D Clut

Note: In Boolean operations, since 0xFF

becomes 0x100, the target bit may be

inverted—caution is required.

Shape[3:0] Specify the polygon shape.

Shape[3] Description

0

When Shape[2:0] is Normal, Line, or Rect:
• No special handling.

When Shape[2:0] is Triangle:
• The Fill Rule is ignored, and double

edge hits are allowed.

1
When Shape[2:0] is Normal, Line, or Rect:

• Only the start point of the line is

99

rasterized.

When Shape[2:0] is Triangle:

• Follows the Fill Rule.

Shape[2:0] Description

0

Normal (Fragmented Line):

Uses the iIndex signal as the intermediate

coordinate and the iDelta signal as the width.

1

Line:

Scans a line with a 32-bit length, using

Vertex0.Y as the upper 16 bits and Vertex0.X

as the lower 16 bits.

The length must be explicitly set (note that it

is not specified as "length - 1"; if the value is

0, the line is skipped).

2

Rectangle:

Uses the line connecting (Vertex0.X,
Vertex0.Y) and (Vertex1.X, Vertex1.Y) as the

diagonal of the rectangle, and the iDelta signal

as the width.

3

Triangle:

Uses (Vertex0.X, Vertex0.Y), (Vertex1.X,
Vertex1.Y), and (Vertex2.X, Vertex2.Y) as the

vertices of the triangle.

4

Context Reference - Normal (Fragmented

Line):

Uses the iIndex signal as the intermediate

coordinate and Context Data 0 as the width.

5

Context Reference - Line:

Scans a line using Context Data 0 as a 32-bit

length.

The length must be explicitly set (note that it

is not specified as "length - 1"; if the value is

0, the line is skipped).

6

Context Reference - Rectangle:

Performs rectangular scanning using Context
Data 0:

• Upper 16 bits specify the height (Y-

direction)

• Lower 16 bits specify the width (X-

100

direction)

Note: Values are not specified as "length -

1". If either value is 0, the scan is skipped.

7 Reserved

BoxY Modifies the final Destination Y-coordinate.

BoxY Description

0 Normal (Y-coordinate after polygon shaping)

1-9

Add the W-coordinate as an offset to the Y-

coordinate after polygon shaping:

Y + 2 × BoxY × W

10
Replace with the X-coordinate after polygon

shaping.

11 Replace with 0.

12 Replace with the X-coordinate.

13 Replace with the Y-coordinate.

14 Replace with the Z-coordinate.

15 Replace with the W-coordinate.

BoxX Modifies the final Destination X-coordinate.

BoxX Description

0 Normal (X-coordinate after polygon shaping)

1-9

Add the Z-coordinate as an offset to the X-

coordinate after polygon shaping:

X + 2 × BoxX × Z

10
Replace with the Y-coordinate after polygon

shaping.

11 Replace with 0.

12 Replace with the X-coordinate.

13 Replace with the Y-coordinate.

14 Replace with the Z-coordinate.

15 Replace with the W-coordinate.

101

DstOp Setting it to '1' changes the matrix transformation to Rotate

mode.

DstRSI Setting it to '1' disables the coordinate size setting DstSize of

the Destination Remapper (edge processing is not performed

in the Remapper).

Additionally, when performing bi-linear or higher-order

interpolation, the reference map must be made one size

larger.

DstAffine Setting it to '1' supplies matrix parameters (translation

components) to the coordinate output of the Source

Remapper.

When set to '0', the default values AffineCoef2 and

AffineCoef5 are used.

DstRead Setting it to '1' enables memory access using the coordinates

generated by the Destination Remapper to prepare data for

the SrcOut system.

In this case, SrcOutInfo and SrcOutBase must be configured.

When set to '0', the generated coordinates themselves are

treated as pixel values.

DstRemap In the Destination Remapper, the mapping settings for the

Destination are configured.

Reference addresses and related parameters are defined in

DstMapInfo and DstMapBase.

DstRemap Description

0 NOP

1
The read mapping data is used as the new X

and Y coordinates.

2
The read mapping data is added to the X and

Y coordinates.

3
The read mapping data is subtracted from the

X and Y coordinates.

102

DstScan Performs transformation of the intermediate coordinates for

the Destination.

This operation takes place after the polygon shaping

transformation.

DstScan Description

[0]
Setting it to '1' allows modification of the X-

coordinate using the DstOffset command.

[1]
Setting it to '1' allows modification of the Y-

coordinate using the DstOffset command.

SrcOp Setting it to '1' enables Rotate mode for the matrix

transformation.

Setting it to '0' enables Homography mode.

Src

Op

Dst

Op

Src

Affin

e

Dst

Affin

e

Description

0 0 0 0 (
𝑢𝑠
𝑣𝑠
)

0 0 0 1 (
𝑢𝑠 + 𝑢𝑑 +𝑚02

𝑣𝑠 + 𝑣𝑑 +𝑚12
)

0 0 1 0

(
𝑚00 𝑚01 𝑚02

𝑚10 𝑚11 𝑚12
) (

𝑢𝑠
𝑣𝑠
1
)

(𝑚20 𝑚21 𝑚22) (
𝑢𝑠
𝑣𝑠
1
)

0 0 1 1

(
𝑚00 𝑚01 𝑢𝑑
𝑚10 𝑚11 𝑣𝑑

)(
𝑢𝑠 +𝑚02

𝑣𝑠 +𝑚12

1
)

(𝑚20 𝑚21 𝑚22) (
𝑢𝑠 +𝑚02

𝑣𝑠 +𝑚12

1
)

0 1 0 0 Reserved

0 1 0 1 Reserved

0 1 1 0 Reserved

0 1 1 1 Reserved

1 0 0 0 (
0
0
)

103

1 0 0 1 (
𝑢𝑑
𝑣𝑑
)

1 0 1 0 (
cos 𝑣𝑠 −sin 𝑣𝑠 𝑚02

sin 𝑣𝑠 cos 𝑣𝑠 𝑚12
) (

𝑚20𝑢𝑠
𝑚21𝑢𝑠
𝑚22

)

1 0 1 1 (
cos(𝑣𝑠 +𝑚12) − sin(𝑣𝑠 +𝑚12) 𝑢𝑑
sin(𝑣𝑠 +𝑚12) cos(𝑣𝑠 +𝑚12) 𝑣𝑑

) (
𝑚20(𝑢𝑠 +𝑚02)
𝑚21(𝑢𝑠 +𝑚02)

𝑚22

)

1 1 0 0 (
𝑢𝑙𝑠 + 𝑢𝑑
𝑢𝑢𝑠 + 𝑣𝑑

)

1 1 0 1 Reserved

1 1 1 0 (
cos 𝑣𝑠 −sin 𝑣𝑠 𝑢𝑙𝑠
sin 𝑣𝑠 cos 𝑣𝑠 𝑢𝑢𝑠

) (

𝑢𝑑
𝑣𝑑
𝑚22

)

1 1 1 1 (
cos(𝑣𝑠 +𝑚12) − sin(𝑣𝑠 +𝑚12) 𝑢𝑙𝑠
sin(𝑣𝑠 +𝑚12) cos(𝑣𝑠 +𝑚12) 𝑢𝑢𝑠

) (

𝑢𝑑
𝑢𝑑
𝑚22

)

 𝑢𝑠, 𝑣𝑠 : Source remap out

 𝑢𝑙𝑠, 𝑢𝑢𝑠 : Source remap out’s lower and upper

 𝑢𝑑 , 𝑣𝑑 : Destination remap out

 m00=AffineCoef0, m01=AffineCoef1, m02=AffineCoef2

 m10=AffineCoef3, m11=AffineCoef4, m12=AffineCoef5

 m20=AffineCoef6, m21=AffineCoef7, m22=AffineCoef8

SrcRSI Setting it to '1' disables the coordinate size setting SrcSize of

the Source Remapper (edge processing is not performed in

the Remapper).

Additionally, when performing bi-linear or higher-order

interpolation, the reference map must be made one size

larger.

SrcUnread Setting it to '1' disables memory access based on the

coordinates generated by the Destination Remapper.

SrcOutInfo and SrcOutBase do not need to be configured.

Note that this is the inverse logic of DstRead.

 Use this setting in cases where the source image is not

needed, such as screen clearing, to reduce memory load.

When set to '1', the generated coordinates themselves are

treated as pixel values.

104

SrcAffine Setting it to '1' applies a matrix transformation to the

coordinate output of the Source Remapper.

The transformation matrix is defined in AffineCoef.

SrcRemap In the Source Remapper, the mapping settings for the Source

are configured.

Reference addresses and related parameters are defined in

SrcMapInfo and SrcMapBase.

For more details, refer to DstRemap.

SrcScan Performs transformation of the intermediate coordinates for

the Source.

This operation is applied after the polygon shaping

transformation.

For details, refer to DstScan.

5.3.1.2. Vertex0-2 Command

 [Address: 0x04 - 0x0c]
31 28 24 20 16 12 8 4 0

Y[15:0] X[15:0]

Name Description

Y Specify a positive Y-coordinate. Negative values are not

supported.

X Specify a positive X-coordinate. Negative values are not

supported.

105

5.3.1.3. PixelCntlB,G,R,A Command

 [Address: 0x10 – 0x1c]
31 28 24 20 16 12 8 4 0

Dis

DstASel SrcASel Lut Blend

DstOne SrcOne Carry Cross

DstInv SrcInv Inword

DstCmp SrcCmp KeyLowSel[1:0]

KeyHighSel[1:0]

DstBSel[3:0] SrcBSel[3:0] ALU[5:0]

Name Description

DstCmp In the Blender, set the one's complement or two's

complement of the Destination pixel.

Note that this is the inverse of SrcCmp.

DstCmp Description

0 Take the complement of the Destination pixel.

1 Use the Destination pixel as-is.

DstInv

Setting it to '1' applies the reciprocal of the pixel value after DstCmp processing in

the Blender. (Refer to Figure 32.)

DstOne

In the Blender, sets the multiplicand of the Destination pixel to 1.0.

DstASel

Configures the selection of the Destination pixel in the Blender:

• '0': Use SrcModData*

• '1': Use SrcOrgData*

If Blend is '1', this setting is ignored and the input data referenced by the

Blender is used instead.

DstBSel

Sets the selection of the Destination pixel before DstCmp processing in the Blender.

106

DstBSel Description

0 Use 0xFF (1.0) as the value.

1 Specified element of Context Data 1.

2 Specified element of Context Data 2.

3 Specified element of Context Data 3.

4 PixelConst.B

5 PixelConst.G

6 PixelConst.R

7 PixelConst.A

8 Element B selected by DstASel.

9 Element G selected by DstASel.

10 Element R selected by DstASel.

11 Element A selected by DstASel.

12 Element B of DstIn.

13 Element G of DstIn.

14 Element R of DstIn.

15 Element A of DstIn.

SrcCmp

In the Blender, sets the one's complement or two's complement of the Source

pixel. Note that this is the inverse of DstCmp.

SrcCmp Description

0 Use the Source pixel as-is.

1 Take the complement of the Source pixel.

107

SrcInv

Setting it to '1' applies the reciprocal of the pixel value after SrcCmp processing in

the Blender. (Refer to Figure 32.)

SrcOne

In the Blender, sets the multiplicand of the Source pixel to 1.0.

Note: Unlike the Destination side, this may be followed by one's or two's complement

settings in the Extractor stage.

SrcASel

In the Extractor, sets the selection of the Source pixel:

• '0': Use SrcModData

• '1': Use SrcOrgData

The final Source pixel may be replaced with 0x00, 0xFF, or inverted based on

the region control of the Extractor.

SrcBSel

Sets the selection of the Source pixel before SrcCmp processing in the Blender. The

behavior is the same as DstBSel.

Carry

Setting it to '1' enables carry propagation (carry-over) between adjacent elements

during ALU operations in the Blender.

Only the A, R, and G elements of ARGB can have carry set:

• A adds the carry from R

• R adds the carry from G

• G adds the carry from B

If only A and G are enabled, AR and RG are treated as 16-bit elements for

multiplication.

If A, R, and G are all enabled, ARGB is treated as a 32-bit element for multiplication.

When all ARGB carry flags are '1', carry generation is disabled, and 32-bit

accumulation is performed.

The accumulation value is reset to 0 at the start of each line. The output will be the

accumulated value (the first value of the line is the initial ARGB value).

Lut

In the Blender, configures the use of Blut and Dither:

108

• '0': Not used

• '1': Used

ALU

Selects the type of ALU operation in the Blender. Operations are performed per

element.

• S: Source pixel input to the ALU

• D: Destination pixel

ALU[5:4] = '0': Addition/Subtraction mode (*).

ALU[3:0] Description ALU[3:0] Description

0 S + D 8 S + D w/o clamp

1 D + S 9 D + S w/o clamp

2 S – D 10 S – D w/o clamp

3 D – S 11 D – S w/o clamp

4
| S + D | 12 | S + D | w/o

clamp

5
| D + S | 13 | D + S | w/o

clamp

6
| S – D | 14 | S – D | w/o

clamp

7
| D – S | 15 | D – S | w/o

clamp

*In standard calculations, results greater than 0xFF are clamped to 0xFF, and results

less than or equal to 0 are clamped to 0.

However, if 'w/o clamp' is enabled, clamping is not performed, and the lower 8 bits of

the result are used.

 ALU[5:4]=1 の場合（Boolean*）

ALU[3:0] Description ALU[3:0] Description

0 0 8 S & D

1 ~S & ~D 9 S ~^ D

2 S & ~D 10 S

3 ~D 11 S | ~D

4 ~S & D 12 D

109

5 ~S 13 ~S | D

6 S ^ D 14 S | D

7 ~S | ~D 15 1

 *Operations are performed on a per-bit basis, and no carry is

generated.

 ALU[5:4]=2 の 場 合

（Mul/Hamming/Min/Max/Sum/Dither/Float/Shift）

ALU[3:0] Description

0 S * D Unsigned

1 S * D Signed

2 256 * S * D Unsigned

3 256 * S * D Signed

4 Min(S, D)

5 Max(S, D)

6 Sum(S ^ D) （Ver.C）

7 Dither(S) （Ver.C）

8 S ＋D /float16 （Ver.C）

9 Reserved

10 Reserved

11 Reserved

12
Shift[2n+1:2n] = ALU[1:0] （Ver.C）

if Component A then n=0

if Component R then n=1

13

14

15

• Sum() counts the number of '1' bits (Hamming distance).

• For Mul results in Unsigned mode:

o Values ≥ 0x100 are clamped to 0xFF

o Values ≤ 0 are clamped to 0x00

• For Mul results in Signed mode:

o Values ≥ 0x80 are clamped to 0x7F

o Values ≤ -0x80 are clamped to 0x80

• Shift[3:0] is treated as a two’s complement value; output is left-shifted

accordingly (right-shifted if negative).

When ALU[5:4] = '3' (Comparison results):

110

ALU[3:0] Description ALU[3:0] Description

0 Flag (注) 8* 0

1 Reserved 9* 1

2 Reserved 10* S == D

3 Reserved 11* S != D

4 Reserved 12* S > D

5 Reserved 13* S < D

6 Reserved 14* S >= D

7 Reserved 15* S <= D

• When ALU[3:0] is 8 or higher, the 1-bit comparison result is replicated across

8 bits.

The comparison targets are the following flags (8-bit):

{S ≤ D, S ≥ D, S < D, S > D, S ≠ D, S = D, 1, 0}

KeyHighSel

In the Extractor, configures the selection for the upper bound in region-based

comparison.

KeyHighSel Description

0

Selects control based on the filter flag.

(Note: If KeyLowSel is 0, this option is forcibly
selected.)

1 Select the value of PixelKeyHigh.

2
Select the value of SrcModData +

PixelKeyHigh.

3
Select the value of SrcOrgData +

PixelKeyHigh.

• The combination of KeyLowSel / KeyHighSel values '10' and '01' is not

allowed.

KeyLowSel

In the Extractor, configures the selection for the lower bound in region-based

comparison.

111

KeyLowSel Description

0
Select control based on the filter flag (Forces this selection if
KeyHighSel is 0)

1 Select the value of PixelKeyLow

2 Select the value of SrcModData - PixelKeyLow

3 Select the value of SrcOrgData - PixelKeyLow

Inword

In the 3D Clut, folds 9-bit input element data into 8-bit. Has no effect on elements

not using the 3D Clut.

When set to '1', adds 1.0 (0x100), right-shifts the result to fit into 8 bits, allowing

direct conversion (MSB becomes '0').

• Maximum negative value −1.0 (0x101) becomes 0

• Maximum positive value 1.0 (0x100) becomes 0xFF

Cross

In the Blender, swaps the data paths of the Source and Destination.

• The complemented result of SrcCmp on the Source side is routed to

multiplicand B on the Destination side

• Multiplicand A from the Destination side is routed into the reciprocal unit on

the Source side

(Refer to Figure 32 for details.)

Blend

In the Blender, configures whether Destination data is used:

• Set to '1': Reads and uses data from DstInInfo and DstInBase

• Set to '0': Substitutes with SrcModData* or SrcOrgData* as selected by

DstASel

112

Dis

Controls whether Blender output is enabled ('0' enables output).

The masking behavior of each element depends on DstOutInfo.Format:

DstOutInfo.Format Description

0
Element ARGB values are output using the following Wired-OR

logic: `Out = A & ~DisA R & ~DisR

1 Don’t care

2 Functions as Byte Disable (Byte Mask)

3

5.3.1.4. PixelKeyCRC Command

 [Address: 0x20]
31 28 24 20 16 12 8 4 0

ASel[1:0] RSel[1:0] GSel[1:0] BSel[1:0

GCond[5:0] BCond[5:0]ACond[5:0] RCond[5:0]

Name Description

A,R,G,BSel In the Extractor, selects the evaluation result (belonging

range) to be referenced for each element operation.

The Cond setting is applied to the selected evaluation result.

Sel Description

0 Select the evaluation result of element B

1 Select the evaluation result of element G

2 Select the evaluation result of element R

3 Select the evaluation result of element A

Name: A, R, G, BSel

Description:.

Sel Description

0 Select the evaluation result of element B

1 Select the evaluation result of element G

2 Select the evaluation result of element R

3 Select the evaluation result of element A

113

A, R, G, BCond

Defines the control region for each ARGB element.

If PixelCntl*.KeyHighSel = '0' or PixelCntl*.KeyLowSel = '0', the control is based on

the filter's Boolean flag (Flag)

(Refer to Figure 32).

Cond Description

[5:4]

Each 2-bit field in Cond[5:0] defines the

behavior under specific comparison conditions.

Value Description

0 Select element of Src*; if

PixelCntl*.SrcOne = '1', select 1

instead

1 Select element of Src′; if

PixelCntl*.SrcOne = '1', select 0

2 Select complement of element

from Src*; if PixelCntl*.SrcOne =
'1', select 0

3 Select complement of element

from Src′; if PixelCntl*.SrcOne =
'1', select 1

[3:2]

Selected when:

• Src > Low and Src <= High, or

• Src > High and Src <= Low

(Use the same value definitions as

Cond[5:4])

When using flag control, this condition applies

if Flag = '1'

[1:0]

Selected when:

• Src <= Low and Src <= High

(Use the same value definitions as

Cond[5:4])

When using flag control, this condition applies

if Flag = '0'

Notes

• Src: Source element selected by PixelCntl*.SrcASel

114

• Src′: Inverse selection of the element chosen by SrcASel

• Low: Lower bound value selected by PixelCntl*.KeyLowSel

• High: Upper bound value selected by PixelCntl*.KeyHighSel

5.3.1.5. PixelKeyMRC Command

 [Address: 0x24]
31 28 24 20 16 12 8 4 0

ASel[1:0] RSel[1:0] GSel[1:0] BSel[1:0

ACond[5:0] RCond[5:0] GCond[5:0] BCond[5:0]

Name Description

A, R, G, BSel In the Extractor, selects the evaluation result (range

classification) used for element masking.

The Cond settings are applied to the selected evaluation result.

Masking is only valid for 8-bit elements.

The final mask result is a logical OR with PixelCntl*.Blend (see

Figure 32).

Sel Description

0 Select evaluation result of element B

1 Select evaluation result of element G

2 Select evaluation result of element R

3 Select evaluation result of element A

A, R, G, BCond In the Extractor, defines the control region for masking of each

element. Even if another element satisfies a masking condition,

this setting can override and cancel the mask.

115

Cond Description

[5:4]

Condition: Src > Low and Src > High

Value Description

0 Do not Mask

1 Mask

2 Do not mask; also unmask other

elements

3 Mask; also unmask other

elements

[3:2]

Condition:

• Src > Low and Src ≤ High

• Src > High and Src ≤ Low

(Uses the same value definitions as
Cond[5:4])

[1:0]
Condition: Src ≤ Low and Src ≤ High

(Uses the same value definitions as Cond[5:4])

Notes:

• Src is the Source element selected by PixelCntl*.SrcASel

• Low is the lower comparison value selected by PixelCntl*.KeyLowSel

• High is the upper comparison value selected by PixelCntl*.KeyHighSel

5.3.1.6. PixelKeyLow Command

 [Address: 0x28]
31 28 24 20 16 12 8 4 0

A[7:0] R[7:0] G[7:0] B[7:0]

Name Description

A,R,G,B Sets the lower fixed value for region control in the Extractor.

5.3.1.7. PixelKeyHigh Command

 [Address: 0x2c]
31 28 24 20 16 12 8 4 0

A[7:0] R[7:0] G[7:0] B[7:0]

116

Name Description

A,R,G,B Sets the upper fixed value for region control in the Extractor.

5.3.1.8. PixelOrg Command

 [Address: 0x30]
31 28 24 20 16 12 8 4 0

AllOp[1:0]

Lut

XSel

OpR[2:0] OpG[2:0] OpB[2:0]ASel[3:0] RSel[3:0] GSel[3:0] BSel[3:0] OpA[2:0]

Name Description

A,R,G,BSel In the Envelope processing, selects the OrgSel for each

element individually (refer to Figure 24).

Sel Description

0 0xff（1.0）

1 Specified element of Context Data 1

2 Specified element of Context Data 2

3 Specified element of Context Data 3

4 PixelConst.B

5 PixelConst.G

6 PixelConst.R

7 PixelConst.A

8 Element B of SrcMod

9 Element G of SrcMod

10 Element R of SrcMod

11 Element A of SrcMod

12 Element B of SrcExt

13 Element G of SrcExt

14 Element R of SrcExt

15 Element A of SrcExt

XSel

In Envelope processing, selects the source for OrgSelX:

• '0': Non-filter processing data

117

• '1': SrcOut
Applies to all elements.

Lut

Applies the 3D Clut to the SrcOrg system after Envelope processing.

Requires enabling via ClutCntl.En.

AllOp

Specifies the operation to be applied after the result of Envelope processing.

AllOp Description

0 NOP

1
Performs absolute value conversion. Applies

to all elements.

2
Clamps values ≤ 0 to 0. Applies to all

elements.

3
Performs cumulative addition for each

fragment in the X direction.

OpA,R,G,B Selects the per-element operation between OrgSel and

OrgSelX.

When Op = '6' or '7', the minimum or maximum value is

selected for each element of OrgSelX, respectively.

Op Description

0 OrgSelX * OrgSel

1 OrgSel

2 min(OrgSelX, OrgSel)

3 max(OrgSelX, OrgSel)

4 OrgSelX + OrgSel

5 OrgSelX - OrgSel

6 min(OrgSelX’s elements)

7 max(OrgSelX’s elements)

118

5.3.1.9. PixelMod Command

 [Address: 0x34]
31 28 24 20 16 12 8 4 0

Abs

Clip

Lut

XSel

ASel[3:0] RSel[3:0] GSel[3:0] BSel[3:0] OpA[2:0] OpR[2:0] OpG[2:0] OpB[2:0]

Name Description

A,R,G,BSel In the Envelope processing, selects the ModSel for each

element individually (refer to Figure 24).

Sel Description

0 0xff（1.0）

1 Specified element of Context Data 1

2 Specified element of Context Data 2

3 Specified element of Context Data 3

4 PixelConst.B

5 PixelConst.G

6 PixelConst.R

7 PixelConst.A

8 Element B of SrcOrg

9 Element G of SrcOrg

10 Element R of SrcOrg

11 Element A of SrcOrg

12 Element B of SrcOut

13 Element G of SrcOut

14 Element R of SrcOut

15 Element A of SrcOut

XSel

In Envelope processing, selects ModSelX:

• '0': Non-filter processing data

• '1': SrcOut
Applies to all elements.

Lut

Uses 3D Clut on the SrcOrg system after Envelope processing.

ClutCntl.En must also be enabled.

119

Clamp

Clamps Envelope processing results ≤ 0 to 0. Applies to all elements.

This is applied after the Abs (absolute value) operation.

If a negative value becomes positive through Abs, that positive value is used.

Abs

Applies absolute value transformation to the result of Envelope processing.

Applies to all elements.

OpA, R, G, B

Selects the operation between ModSel and ModSelX for each element.

When Op = '6' or '7', selects the minimum or maximum value from ModSelX for each

element, respectively.

Op Description

0 ModSelX * ModSel

1 ModSel

2 min(ModSelX , ModSel)

3 max(ModSelX , ModSel)

4 ModSelX + ModSel

5 ModSelX - ModSel

6 min(ModSelX ’s elements)

7 max(ModSelX ’s elements)

5.3.1.10. PixelDefault Command

 [Address: 0x38]
31 28 24 20 16 12 8 4 0

A[7:0] R[7:0] G[7:0] B[7:0]
Name Description

A,R,G,B Sets the value for pixels that exceed various boundaries.

5.3.1.11. PixelConst Command

[Address: 0x3c]
31 28 24 20 16 12 8 4 0

A[7:0] R[7:0] G[7:0] B[7:0]
Name Description

120

A, R, G, B Referenced by both the Blender and Envelope blocks.

In the Blender, it is used as the multiplicand in multiplication

when selected by PixelCntl*.DstBSel or PixelCntl*.SrcBSel.

5.3.1.12. SrcInInfo Command

 [Address: 0x40]
31 28 24 20 16 12 8 4 0

Flush

Round

Rot[1:0]

Exp[1:0]

Format[1:0]

Stride[15:0] Swap[7:0]

Name Description

Stride In the Pixel Cache, set the address update width for the

referenced Source input data as "update width – 1".

The unit depends on the Format.

For 1 Bpp, the setting must be specified in 32 Bpp units.

 For example, if updating in the Y-direction requires a 64-bit

move, the setting value should be '1' (i.e., 64 / 32 - 1).

Swap In the Pixel Cache, configure the Byte Swap for the

referenced Source input data.

This defines the byte-level mapping from input data In[31:0]

to internal data Pipe[31:0].

 Ensure a 1-to-1 mapping is used.

Incorrect settings can result in undefined values or

overlapping (aliasing), so caution is required.

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

Pipe[31:24] Pipe[23:16] Pipe[15:8] Pipe[7:0]

0 In[31:24] In[23:16] In[15:8] In[7:0]

1 In[7:0] In[31:24] In[23:16] In[15:8]

2 In[15:8] In[7:0] In[31:24] In[23:16]

3 In[23:16] In[15:8] In[7:0] In[31:24]

121

Flush In the Pixel Cache, this setting initializes the cache for the

referenced Source input data.

It is used to clear the cache when there is a possibility that

the cache data may be updated.

 As an external signal operation, it performs an empty write

access on the memory bus (mrRxw signal = '0').

 Do not use this setting if:

• External cache is not used

• External cache does not support a flush function

• You are using Version A, B, or C, where this function is disabled.

Round Performs rounding of the fractional part of the X and Y

coordinates input to the Pixel Cache.

 Do not enable this setting when using Bi-linear or Bi-cubic

interpolation.

Rot In the Pixel Cache, configure the detailed pixel format of the

referenced Source input data.

(For more information, refer to the Format specification.)

Exp In the Pixel Cache, configure the detailed pixel format for the

referenced Source input data.

Refer to the Format documentation for specific details on

format definitions and settings.

Format In the Pixel Cache, configure the Bits per Pixel (Bpp) for the

referenced Source input data.

If using 1 Bpp, additional configuration for the Bitmap Filter is

required.

122

Format Exp Pipe
[31:24]

Pipe
[23:16]

Pipe
[15:8]

Pipe
[7:0] Note

0
8Bpp

0 0 0 0 In[7:0]
1 In[7:0] In[7:0] In[7:0] In[7:0] 8bit Replica

0
1Bpp

2 Internal Special (MSB First) MSB First Only
at Ver.A 3 Internal Special (LSB First)

1
16Bpp

0 Gray
In

[15:11]
[15:13]

In
[10:5]
[10:9]

In
[4:0]
[4:2]

RGB565
Lower Replica

1
In

[15:8]

In[7:0] In[7:0]
In

[7:0]

Rot=’0’
In[7:0] In[15:8] Rot=’1’
In[15:8] In[7:0] Rot=’2’
In[15:8] In[15:8] Rot=’3’

2 0xff

In
[31:24]

/In
[15:8]

In
[23:16]

In
[7:0]

Alpha=1.0
YUYV

3 In[31:16] >> X In[15:0] >> X
X={Signed, Rot}
force Signed to

'1'

2
24Bpp

0 In
[23:16]

In
[23:16]

In
[15:8]

In
[7:0]

1 Gray
In

[23:16]
In

[15:8]
In

[7:0]

2 0xff In
[23:16]

In
[15:8]

In
[7:0] Alpha=1.0

3 Gray Gray Gray Gray All Gray

3
32Bpp

0

In
[31:24]

In
[23:16]

In
[15:8]

In
[7:0] Rot[0]=’0’

8Bpp
X[1:0]=

0

8Bpp
X[1:0]=

1

8Bpp
X[1:0]=

2

8Bpp
X[1:0]=

3
Rot[0]=’1’

1 Gray In
[23:16]

In
[15:8]

In
[7:0]

2 0xff In
[23:16]

In
[15:8]

In
[7:0] Alpha=1.0

3 Gray Gray Gray Gray All Gray
 In: Memory side
 Pipe: Blender side (=ARGB)
 Gray: (2 In[23:16] + 5 In[15:8] + In[7:0]) / 8
 FI: ftoi(In[15:0])

123

5.3.1.13. SrcInBase Command

 [Address: 0x44]
31 28 24 20 16 12 8 4 0

Base[31:6] Wrap[5:0]
Name Description

Base In the Pixel Cache, configure the base address for the

referenced Source input data.

The address must be aligned to a 64-byte boundary.

Wrap By setting the MSB to '1', a mask is applied using Wrap[4:1] (4

bits).

The mask value applied to the 32-bit address is:

0x007FFFFF >> ~Wrap[4:1]

 Additionally, Wrap[0] (1 bit) is sent as the LSB of the address

to the memory system.

 If the MSB is '0', no masking is applied, and Wrap[1:0] (2 bits)

are sent as the LSB of the address to the memory system as

informational bits.

5.3.1.14. SrcOutInfo Command

 [Address: 0x48]
31 28 24 20 16 12 8 4 0

Flush Exp[1:0]

Round Format[1:0]

Stride[15:0] Swap[7:0] Rot[1:0]

Name Description

Stride Sets the update interval (minus 1) for the rectangular Envelope

pattern applied to the Source data or the address of the

Texture data. (See SrcInInfo.Stride for details.)

Swap Sets the byte swap for the rectangular Envelope pattern data

applied to the Source data or the Texture data. (See

SrcInInfo.Swap for details.)

Flush Initializes the cache for the rectangular Envelope pattern data

applied to the Source data or the Texture data. (See

SrcInInfo.Flush for details.)

Round Rounds the fractional part of the X and Y coordinates input to

124

the Pixel Cache. Do not enable this when using Bi-linear or Bi-

cubic interpolation.

Rot Specifies the detailed pixel format of the Source input data

referenced by the Pixel Cache. (See Format for details.)

Exp Specifies the detailed pixel format of the rectangular region or

Texture data applied to the Source data. (See SrcInInfo.Exp for

details.)

Format Specifies the bits per pixel (Bpp) format for the rectangular

region or Texture data applied to the Source data. (See

SrcInInfo.Format for details.)

5.3.1.15. SrcOutBase Command

 [Address: 0x4c]
31 28 24 20 16 12 8 4 0

Base[31:6] Wrap[5:0]
Name Description

Base Sets the base address of the rectangular Envelope pattern

applied to the Source data or the Texture data. Must be set in

64-byte boundary units. (See SrcInBase.Base for details.)

Wrap See SrcInBase.Wrap for details.

5.3.1.16. SrcMapInfo Command

 [Address: 0x50]
31 28 24 20 16 12 8 4 0

Form[1:0] Swap Exp[1:0]

Switch[1:0] Format[1:0]

Stride[15:0] Div[2:0]Prec[3:0]

Name Description

Stride In the Source Remapper, sets the address update interval

(minus 1) for the referenced source map data. (See

SrcInInfo.Stride for details.)

Form In the Source Remapper, defines the data transformation

format. Input data must match this format. Internally, data is

temporarily converted to single-precision floating-point for

125

processing. If using floating-point format, set Div = 0.

From Description

0 ItoF (Integer Input)

1 Reserved

2 HFtoF (Half-Precision Floating-Point Input)

3 FtoF (Single-Precision Floating-Point Input)

Switch Selects the reference coordinates and base coordinates in

the Source Remapper.

Switch[0] Description

0
The reference coordinates are those generated

by MasterCntl.Shape.

1
The reference coordinates are those input to

frComp.

Switch[1] Description

0
The base coordinates are those generated by

MasterCntl.Shape.

1
The base coordinates are those input to

frComp.

Prec In the Source Remapper, if MasterCntl.SrcRemap is not '0', the

fractional position of the referenced coordinates is specified as

a two's complement value relative to the LSB. If

MasterCntl.SrcRemap is '0', processing is performed on the

parametric coordinates. Since only 4 bits of the fractional part

are valid for use in subsequent matrix transformations, any

excess bits will be truncated.

 For non-Texture cases (Exp[1] = '0'):
Prec Description

0 Multiplies the 16-bit output coordinates by 1
(x1).

1 Divides the 16-bit output coordinates by 2
(x1/2).

2 Divides the 16-bit output coordinates by 4
(x1/4).

3 Divides the 16-bit output coordinates by 8
(x1/8).

126

4 Divides the 16-bit output coordinates by 16
(x1/16).

5
Divides the 16-bit output coordinates by 32

(x1/32).

6 Divides the 16-bit output coordinates by 64
(x1/64).

7 Divides the 16-bit output coordinates by 128
(x1/128).

8 Disables the escape value (0x8000).

9 Multiplies the 16-bit output coordinates by 128
(x128)

10 Multiplies the 16-bit output coordinates by 64
(x64)

11 Multiplies the 16-bit output coordinates by 32
(x32)

12 Multiplies the 16-bit output coordinates by 16
(x16)

13 Multiplies the 16-bit output coordinates by 8
(x8)

14 Multiplies the 16-bit output coordinates by 4
(x4)

15
Multiplies the 16-bit output coordinates by 2

(x2)
 Note: From Ver.C onward, rounding is applied when

Format[0] = '0' (Nearest Neighbor).

 For Texture mode (Exp[1] = '1'):
Prec[2:0] Description

0 Uses 1-bit input coordinates Y000, X000 as XY

1 Uses 2-bit input coordinates Y1:01:01:0,
X1:01:01:0 as XY

2 Uses 3-bit input coordinates Y2:02:02:0,
X2:02:02:0 as XY

3 Uses 4-bit input coordinates Y3:03:03:0,
X3:03:03:0 as XY

4 Uses 5-bit input coordinates Y4:04:04:0,
X4:04:04:0 as XY

5 Uses 6-bit input coordinates Y5:05:05:0,
X5:05:05:0 as XY

6 Uses 7-bit input coordinates Y6:06:06:0,
X6:06:06:0 as XY

7 Uses 8-bit input coordinates Y7:07:07:0,
X7:07:07:0 as XY

 Note: If Prec[3] = '1', the escape value (0x8000) is disabled.

Swap In the Source Remapper, sets the Half Word Swap for the

referenced data.

127

Swap Pipe[31:16] Pipe[15:0]

0 In[31:16] In[15:0]

1 In[15:0] In[31:16]

Div In the Source Remapper, specifies the coordinate sampling

interval (2^Div).

If set to 0, the input and output coordinates correspond one-

to-one.

If set to a non-zero value, 2^Div output coordinates are

generated for each input coordinate.

When selecting Div ≠ 0, Form must be set to 0.

Exp In the Source Remapper, specifies the detailed pixel format of

the referenced source map data. (See Format for details.)

Format In the Source Remapper, specifies the bits per pixel (Bpp)

format of the referenced source map data.

Format Exp Xo Yo Note

0

0 mem32(Xi, Yi)
Nearest

SrcOffset
Offset

1 SrcOffset Mask

2
Xi, Yi mem8(Xi, Yi)

Nearest

SrcOffset
Offset

3 SrcOffset Mask

1

0 mem32(Xi, Yi)
Bi-linear

SrcOffset
Offset

1 SrcOffset Mask

2
Xi, Yi mem16(Xi, Yi)

Nearest

SrcOffset
Offset

3 SrcOffset Mask

2*

0
mem32(2Xi, Yi) mem32(2Xi+１,

Yi)
32bit Deta
Packing 1

2
Xi, Yi

mem32(Xi, Yi)
[23:16][7:0]

Nearest

SrcOffset
Offset

3 SrcOffset Mask

3*

0

mem32(Xi, 2Yi) mem32(Xi,
2Yi+1)

32bit Deta
Planar
（Interleaved by
Stride）

1

2
Xi, Yi

mem32(Xi, Yi)
Gray 変換
Nearest

SrcOffset
Offset

3 SrcOffset Mask
Xi, Yi are input coordinates.
Xo, Yo are output coordinates, with the fractional bit

128

position selected by Prec.
memn() indicates memory data access with an n-bit word
length.
When Form = 3, precision correction must be disabled. Set
both DisableInPrec and DisableOutPrec in the Utility register
to 1.

5.3.1.17. SrcMapBase Command

 [Address: 0x54]
31 28 24 20 16 12 8 4 0

Base[31:6] Wrap[5:0]
Name Description

Base In the Source Remapper, sets the base address of the

referenced source map data. (See SrcInBase.Base for details.)

Wrap See SrcInBase.Wrap for details.

5.3.1.18. SrcSize Command

 [Address: 0x58]
31 28 24 20 16 12 8 4 0

WidthY[15:0] WidthX[15:0]

Name Description

WidthY,X In the Pixel Cache (Source In), the reference range is

specified in pixel units.

Used for edge copying and color replacement judgment when

crossing boundaries.

Specifies the image size (e.g., 640×480 for VGA).

A value of 0 represents infinity (no boundary check is

performed).

5.3.1.19. SrcOffset Command

 [Address: 0x5c]
31 28 24 20 16 12 8 4 0

OffsetY[15:0] OffsetX[15:0]

CoorX1[3:0] CoorX0[3:0]BoxY[3:0] MaskY[3:0] CoorY1[3:0] CoorY0[3:0] BoxX[3:0] MaskX[3:0]

Name Description

OffsetY If MasterCntl.SrcScan[1] is '0', sets an offset or mask on the Y

coordinate of the referenced SrcIn in the Source Remapper. Offsets

are expressed in two's complement.

129

OffsetX If MasterCntl.SrcScan[0] is '0', sets an offset or mask on the X

coordinate of the referenced SrcIn in the Source Remapper. Offsets

are expressed in two's complement.

Box*, Mask*, Coor* If MasterCntl.SrcScan is '1' (with MSB as Y', LSB as X'),

modifies the XY coordinates of the referenced SrcIn in the

Source Remapper using the following methods.

Coor*[2:0]
CoorX0 CoorY0 CoorX1 CoorY1

U0 V0 U1 V1

0 X Y 0 0

1

0 2

3

4 X

5 Y

6 Z

7 W

Coor

X1*

[3],

Coor

X0*

[3]

X’

0 0 U0%216-MaskX + U1 * 2BoxX

0 1 U0 / 2MaskX + U1 * 2BoxX

1 0 U0%216-MaskX + U1 / 2BoxX

1 1 U0 % 2BoxX+ U1 / 2 BoxY * 2BoxX

Coor

Y1*

[3],

Coor

Y0*

[3]

Y’

0 0 V0%216-MaskY + V1 * 2BoxY

0 1 V0 / 2MaskY + V1 * 2BoxY

1 0 V0%216-MaskY + V1 / 2BoxY

1 1
V0 / 2 BoxX%216-MaskX

+ V1 / 2BoxY%216-MaskY * 2 MaskX

130

5.3.1.20. DstInInfo Command

 [Address: 0x60]
31 28 24 20 16 12 8 4 0

Exp[1:0]

Format[1:0]

Stride[15:0] Swap[7:0] Rdc[2:0]

Name Description

Stride In the Blender, sets the address update interval (update width

- 1) for the referenced Destination input data. (See

SrcInInfo.Stride for details.)

Note: 0xffff is treated as 0.

Swap In the Blender, sets the byte swap for the referenced

Destination input data. (See SrcInInfo.Swap for details.)

Rdc In the Blender, sets the pixel value shift amount (×2⁻ⁿ) for

the referenced Destination input data.

Exp In the Blender, specifies the detailed pixel format of the

referenced Destination input data. (See Format for details.)

Format In the Blender, sets the bits per pixel (Bpp) format for the

referenced Destination input data. Must be the same format

as DstOut.

Format Exp Pipe
[31:24]

Pipe
[23:16]

Pipe
[15:8]

Pipe
[7:0] Note

0
8Bpp

0 In[7:0] 8bit Replica
1 Unkown Reserved

2 In[7:0]

8bit Replica
Sign Extention

2’s
complement

3 Unkown Reserved

1
16Bpp

0 Gray
In

[15:11]
[15:13]

In
[10:5]
[10:9]

In
[4:0]
[4:2]

RGB565
Lower Replica

1 In
[15:8]

In[7:0] In[7:0] In[7:0] Rdc[1:0]=’0’

In[7:0] In[15:8
] In[7:0] Rdc[1:0]=’1’

In[15:8] In[7:0] In[7:0] Rdc[1:0]=’2’

In[15:8] In[15:8
] In[7:0] Rdc[1:0]=’3’

2 0xff

In
[31:24]

/In
[15:8]

In
[23:16]

In
[7:0]

Alpha=1.0
YUYV

3

In[15:0] >>Rdc
if [15] then 0

In[15:0] >>Rdc
if [15] then 0

Reduce
Rdc≠0

In
[15:8]

In
[7:0]

In
[7:0]

In
[7:0]

Pass
Rdc=0

131

2
24Bpp

0 In
[23:16]

In
[23:16]

In
[15:8]

In
[7:0]

1 Gray In
[23:16]

In
[15:8]

In
[7:0]

2 0xff In
[23:16]

In
[15:8]

In
[7:0] Alpha=1.0

3 Gray Gray Gray Gray All Gray

3
32Bpp

0 In
[31:24]

In
[23:16]

In
[15:8]

In
[7:0] Pass

1 Gray In
[23:16]

In
[15:8]

In
[7:0]

2 In
[31:24]

In
[23:16]

In
[15:8]

In
[7:0]

Sign Extention
2’s

complement
3 Gray Gray Gray Gray All Gray

 In: Memory side
 Pipe: Blender side (=ARGB)

5.3.1.21. DstInBase Command

 [Address: 0x64]
31 28 24 20 16 12 8 4 0

Base[31:6] Wrap[5:0]
Name Description

 Base In the Blender, sets the base address of the referenced

Destination input data. (See SrcInBase.Base for details.)

 Wrap If the MSB is set to '1', the 4-bit field Wrap[4:1] specifies a

mask. The mask value applied to the 32-bit address is

calculated as 0x007FFFFF >> ~Wrap[4:1]. Additionally, the LSB

of the address sends Wrap[0] (1 bit) as information to the

memory system.

If the MSB is '0', the Y coordinate is masked within the Blender

to implement ring buffer processing. The mask range is set by

Wrap[4:2]. If this range is '0', no masking is applied. In this case,

Wrap[1:0] (2 bits) are sent as LSB information to the memory

system.

5.3.1.22. DstOutInfo Command

 [Address: 0x68]
31 28 24 20 16 12 8 4 0

Exp[1:0]

Format[1:0]

Stride[15:0] Swap[7:0] Rdc[2:0]

132

Name Description

Stride In the Blender, sets the address update interval (update width

- 1) for the Destination output data. (See SrcInInfo.Stride for

details.)

Note: 0xffff is treated as 0.

Swap In the Blender, sets the byte swap for the Destination output

data. This defines the byte-wise mapping from internal data

Pipe[31:0] to output data Out[31:0].

If not configured as a one-to-one mapping, it may result in

unknown values or data overlap.

Value
Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

Out[31:24] Out[23:16] Out[15:8] Out[7:0]

0 Pipe[31:24] Pipe[23:16] Pipe[15:8] Pipe[7:0]

1 Pipe[23:16] Pipe[15:8] Pipe[7:0] Pipe[31:24]

2 Pipe[15:8] Pipe[7:0] Pipe[31:24] Pipe[23:16]

3 Pipe[7:0] Pipe[31:24] Pipe[23:16] Pipe[15:8]

Rdc In the Blender, sets the reduction ratio of the pixel format for the

referenced Destination output data.

Exp In the Blender, specifies the detailed pixel format of the referenced

Destination output data. (See Format for details.)

Format In the Blender, sets the bits per pixel (Bpp) format of the referenced

Destination output data (partially differs from DstInInfo.Format).

For 16 Bpp YUYV format:

• The R component is output in the upper 8 bits.

• The G and B components are alternately output to the lower 8 bits

depending on whether the output horizontal pixel position is even or

odd.

Format Exp Out
[31:24]

Out
[23:16]

Out
[15:8]

Out
[7:0] Note

0
8Bpp

0 Pipe[7:0]

 A[7:0] & ~DisA
|
 R[7:0] & ~DisR
|
 G[7:0] & ~DisG
|
 B[7:0] & ~DisB

1 Reserved

133

2 Pipe[7:0]

 A[7:0] & ~DisA
|
 R[7:0] & ~DisR
|
 G[7:0] & ~DisG
|
 B[7:0] & ~DisB

Sign Extention
2’s
complement

3 Unknown
Pipe
[15:0]
>>Rdc

Pass & Reduce
Clip if negative
and overflow

1
16Bpp

0 Unknown

Pipe
[23:19]
[15:10]
[7:3]

RGB565
Lower Cut

1 Unknown Pipe[15:0]

2 Unknown Pipe
[23:16]

Pipe
[15:8]
/Pipe
[7:0]

YUYV
Upper is even
Lower is odd

3
Unknown

Pipe
[31:16]
>> Rdc

Pipe
[15:0]
>> Rdc

Reduce
Rdc≠0

Clip if negative
and overflow

 Pipe[15:0] Pass
Rdc=0

2
24Bpp

0 Unkno
wn Pipe[23:0] Pass

1
Unknown Reserved

2

3 Unkno
wn Pipe[31:0] >> Rdc Pass & Reduce

3
32Bpp

0 Pipe[31:0] Pass
1 0xff Pipe[23:0] A=0xff

2 Pipe[31:0]
Sign Extention

2’s
complement

3 Pipe[31:0] >>Rdc
Pass & Reduce

Sign is
expanded

 Out: Memory side
 Pipe: Blender side (=ARGB)

5.3.1.23. DstOutBase Command

[Address: 0x6c]
31 28 24 20 16 12 8 4 0

Base[31:6] Wrap[5:0]
Name Description

134

 Base In the Blender, sets the base address of the referenced Destination

output data. Must be set in 64-byte boundary units. (See

SrcInBase.Base for details.)

 Wrap See DstInBase.Wrap for details.

5.3.1.24. DstMapInfo Command

 [Address: 0x70]

31 28 24 20 16 12 8 4 0

Form[1:0] Swap Exp[1:0]

Switch[1:0] Format[1:0]

Stride[15:0] Prec[3:0] Div[2:0]

Name Description

Stride In the Destination Remapper, sets the address update interval

(update width - 1) for the referenced Destination map data.

(See SrcMapInfo.Stride for details.)

Form In the Destination Remapper, defines the data transformation

format. Input data must conform to this format. Internally, data

is temporarily converted to single-precision floating-point for

processing. (See SrcMapInfo.Form for details.)

Switch In the Source Remapper, selects the reference and base

coordinates. (See SrcMapInfo.Switch for details.)

Prec In the Destination Remapper, if MasterCntl.DstRemap is '1', the

fractional position of the referenced coordinates is specified as

a two’s complement value relative to the LSB. (See

SrcMapInfo.Prec for details.)

Swap In the Destination Remapper, sets the Half Word Swap for the

referenced data. (See SrcMapInfo.Swap for details.)

Div In the Destination Remapper, specifies the coordinate sampling

interval (2^Div). (See SrcMapInfo.Div for details.)

135

Exp In the Destination Remapper, sets how the referenced

Destination map data is handled. (See SrcMapInfo.Exp for

details.)

Format In the Destination Remapper, sets the bits per pixel (Bpp)

format of the referenced Source map data. (See

SrcMapInfo.Format for details.)

5.3.1.25. DstMapBase Command

 [Address: 0x74]
31 28 24 20 16 12 8 4 0

Base[31:6] Wrap[5:0]
Name Description

Base In the Destination Remapper, sets the base address of the

referenced Destination map data. (See SrcMapBase.Base for

details.)

Wrap See SrcMapBase.Wrap for details.

5.3.1.26. DstSize Command

 [Address: 0x78]
31 28 24 20 16 12 8 4 0

WidthY[15:0] WidthX[15:0]

Name Description

WidthY, WidthX Specifies the reference range in Source Out or the write range

in the Blender in pixel units.

• When MasterCntl.DstOp = '0' (Source Out read), it is used to

determine edge copying and color replacement when

crossing boundaries. Specifies the image size (e.g., 640×480

for VGA).

• When MasterCntl.DstOp = '1' (Blender write), pixels that go

beyond the boundary are masked.

• A value of 0 represents infinity (no boundary check is

performed).

136

5.3.1.27. DstOffset Command

 [Address: 0x7c]

31 28 24 20 16 12 8 4 0

OffsetY[15:0] OffsetX[15:0]

BoxY[3:0] MaskY[3:0] CoorY1[3:0] CoorY0[3:0] BoxX[3:0] MaskX[3:0] CoorX1[3:0] CoorX0[3:0]

Name Description

OffsetY If MasterCntl.SrcScan[1] is '0', sets an offset on the Y coordinate of

the referenced Destination in the Destination Remapper. The value is

expressed in two's complement.

OffsetX If MasterCntl.SrcScan[0] is '0', sets an offset on the X coordinate of

the referenced Destination in the Destination Remapper. The value is

expressed in two's complement.

Box*, Mask*, Coor* If MasterCntl.DstScan is '1' (MSB = Y’, LSB = X’),

modifies the XY coordinates of the referenced SrcOut in

the Destination Remapper using the following methods.

Coor*[2:0]
CoorX0 CoorY0 CoorX1 CoorY1

U0 V0 U1 V1

0 X Y 0 0

1

0 2

3

4 X

5 Y

6 Z

7 W

Coor

X1*

[3],

Coor

X0*

[3]

X’

0 0 U0%216-MaskX + U1 * 2BoxX

0 1 U0 / 2MaskX + U1 * 2BoxX

137

1 0 U0%216-MaskX + U1 / 2BoxX

1 1 U0 % 2BoxX+ U1 / 2 BoxY * 2BoxX

Coor

Y1*

[3],

Coor

Y0*

[3]

Y’

0 0 V0%216-MaskY + V1 * 2BoxY

0 1 V0 / 2MaskY + V1 * 2BoxY

1 0 V0%216-MaskY + V1 / 2BoxY

1 1
V0 / 2 BoxX%216-MaskX

+ V1 / 2BoxY%216-MaskY * 2 MaskX

5.3.1.28. CICntl Command

 [Address: 0x80]

31 28 24 20 16 12 8 4 0

En

Inc Filter

Copy Affine

Vertex

Base[31:8] Mode[1:0]

Name Description

 Base Sets the start address for storing the 32-byte input context.

Must be set in 256-byte boundary units.

Address + n Group Description

0

Header

Number of operation (when エラ

ー! 参照元が見つかりませ

ん。 is enabled）

1

Total value (when エラー! 参照

元が見つかりません。 is

enabled）

2

Minimum value （when エラー!

参照元が見つかりません。 is

enabled）

138

3

Maximum value （when エラー!

参照元が見つかりません。 is

enabled）

4

Vertex

Vertex0（when Vertex is

enabled）

5
Vertex1（when Vertex is

enabled）

6
Vertex2（when Vertex is

enabled）

7

Affine

Affin Coef0（when Affine is

enabled）

8
Affin Coef1（when Affine is

enabled）

9
Affin Coef2（wnen Affine is

enabled）

10
Affin Coef3（when Affine is

enabled）

11
Affin Coef4（when Affine is

enabled）

12
Affin Coef5（when Affine is

enabled）

13
Affin Coef6（when Affine is

enabled）

14
Affin Coef7（when Affine is

enabled）

15
Affin Coef8（when Affine is

enabled）

139

16

Filter

Reserved

17 Reserved

18
FilterCoef00（when Filter is

enabled）

19
FilterCoef01（when Filter is

enabled）

20
FilterCoef10（when Filter is

enabled）

21
FilterCoef11（when Filter is

enabled）

22
FilterCoef12（when Filter is

enabled）

23
FilterCoef13（when Filter is

enabled）

24
FilterCoef20（when Filter is

enabled）

25
FilterCoef21（when Filter is

enabled）

26
FilterCoef22（when Filter is

enabled）

27
FilterCoef23（when Filter is

enabled）

28
FilterCoef24（when Filter is

enabled）

29
FilterCoef25（when Filter is

enabled）

140

30
FilterCoef26（when Filter is

enabled）

31
FilterCoef27（when Filter is

enabled）

Inc When set to '1', adds the product of the iIndex[31:16] signal (Y index) and the

number of entries per flag (see table below) to the Base. This increments the

context per Y.

Even if the increment value is large, Groups whose flags are not set will not be

read.

(For example, if only the Filter flag is set, the increment amount is 32, but the

Header, Vertex, and Affine contexts will use the original Command values.)

Filter Affine Vertex En Group Description

0 0 0 0 - -

0 0 0 1 Header 4

0 0 1 0 Header

+Vertex
8

0 0 1 1

0 1 0 0
Header

+Vertex

+Affine

16
0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

Header

+Vertex

+Affine

+Filter

32

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Copy When set to '1', copies the number of operations, total value, minimum

value, and maximum value from the input context to the output context.

Mode Specifies the loading of a specific context.

If Mode[1] is '1', only the context specified by CICntl[4:0] is targeted.

CICntl[4:0] specifies the context number only; the following functions

141

do not apply.

In this mode, the offset applied by Inc is fixed at 4.

Filter When set to '1', loads the 2D filter coefficients. This takes precedence

over the Command List settings.

Affine When set to '1', loads the matrix transformation coefficients. This takes

precedence over the Command List settings.

Vertex When set to '1', loads the vertex coordinates. This takes precedence

over the Command List settings.

En When set to '1', loads the number of operations, total value, minimum

value, and maximum value from the input context.

5.3.1.29. COCntl Command

 [Address: 0x84]
31 28 24 20 16 12 8 4 0

En

Flush

Clr

Unit[1:0]

SelSum[1:0]

SelEval

Base[31:8]

Name Description

Base Sets the start address for storing the 32-byte output context.

Must be set in 256 byte boundary units.

Flus In the output context, clears the cache information and reloads

the data.

Clr In the output context, clears the content to zero at the timing of

the first fragmentation based on the unit specified by Unit.

This takes precedence even if COCntl.Flush is '1'.

Unit In the output context, sets the control unit. At the timing of the

first fragmentation for the specified unit, the context contents

can be cleared.

142

Unit Description

0 Reserved

1 2D (starts when index X=0, Y=0)

2 3D (starts when index X=0, Y=0, Z=0)

3 4D (starts when index X=0, Y=0, Z=0, W=0)

SelSum Specifies the element to be used for the total value stored in

the output context.

SelSum Description

0 Selects element B

1 Selects element G

2 Selects element R

3 Selects element A

SelEval Specifies the data to be used for the total, maximum, and

minimum values stored in the output context.

SelEval Description

0 Selects DstOutData from Blender output

1 Selects DstOrgData from Blender output

En When set to '1', enables writing to the output context.

143

5.3.1.30. HistCntl0 Command

 [Address: 0x88]
31 28 24 20 16 12 8 4 0

Flush

Clr

Unit[1:0]

En[3:0]Stride[7:0] Swap[7:0] Op[7:0]

Name Description

Stride In the Histogram, when stacking aggregation units (Unit) in 2D, this sets

the interval minus 1 between them.

For example, when aggregating a frame (indexed by X and Y) and

arranging the results by index Z (horizontal axis) and index W (vertical

axis), this sets the interval for when index W is incremented.

The actual address interval is calculated as:

(Number of enabled elements indicated by En) × (Index count

indicated by HistCntl1.Num = 2^Num) × 4.

Swap In the Histogram, sets the index swap for each element. Selects which

element of DstOutData (referred to as Data in the table below) from

the Blender output to use.

Value

Swap[7:6] Swap[5:4] Swap[3:2] Swap[1:0]

Index[31:24

]

Index[23:16

]
Index[15:8] Index[7:0]

0 Data[31:24] Data[23:16] Data[15:8] Data[7:0]

1 Data[7:0] Data[31:24] Data[23:16] Data[15:8]

2 Data[15:8] Data「[7:0] Data[31:24] Data[23:16]

3 Data[23:16] Data[15:8] Data[7:0] Data[31:24]

Op In the Histogram, the histogram is updated based on the

following calculation formula.

Every 2 bits from the upper side correspond to the computation

for each ARGB element.

Op[2n-1:2n] Description

0 Hist[Index] = Hist[Index] + 1

1 Hist[Index] = Hist[Index] + DstOrg

2 Hist[DstOrg] = Hist[DstOrg] + 1

3 Hist[DstOrg] = Hist[DstOrg] + Index

 Flush In the Histogram, clears the cache information of the referenced

144

histogram and reloads the data.

This is unnecessary if each process uses a unique address.

Clr In the Histogram, clears the content to zero at the timing of the

first fragmentation, as specified by the Unit.

Unit n the Histogram, sets the aggregation unit.

Unit Description

0 Reserved

1 2D (starts when index X = 0, Y = 0)

2 3D (starts when index X = 0, Y = 0, Z = 0)

3
4D (starts when index X = 0, Y = 0, Z = 0, W =

0)

En In the Histogram, specifies whether to enable aggregation for

each element. Set to '1' to enable.

This flag also determines which elements are written to

memory.

If all are set to '0', no data will be written.

En Description

[0]
Performs Histogram aggregation for element

B.

[1]
Performs Histogram aggregation for element

G.

[2]
Performs Histogram aggregation for element

R.

[3]
Performs Histogram aggregation for element

A.

5.3.1.31. HistCntl1 Command

 [Address: 0x8c]

31 28 24 20 16 12 8 4 0

Base[31:8] Num[3:0] Integral[3:0]

145

Name Description

Base In the Histogram, sets the start address for storing the result.

Must be set in 256-byte boundary units.

Num In the Histogram, sets the number of indices to be written

(2^Num).

Values of 8 or higher are treated as 8.

Integral In the Histogram, specifies the elements to be output as

cumulative (integrated) values.

Integral Description

[0] Accumulate Histogram for element B

[1] Accumulate Histogram for element G

[2] Accumulate Histogram for element R

[3] Accumulate Histogram for element A

5.3.1.32. ClutCntl Command

 [Address: 0x90]

31 28 24 20 16 12 8 4 0

Flush

Sel

Mode[1:0]

Ring[3:0] En[3:0]Base[31:12]

Name Description

Base In the 3D CLUT, sets the base address for loading data into

the referenced SRAM. Must be set in 256-byte boundary

units.

The referenced data is packed either as 24-bit per word (from

LSB) or 32-bit per word, depending on the Mode.

If En is not '0', setting this to '0' is prohibited.

146

Ring In the 3D CLUT (excluding 1D mode Binary), sets the

interpolation type for each ARGB element result.

 ・If set to '0', extrapolation is performed at the final edge.

 ・If set to '1', ring interpolation is performed (connecting the

coordinate following the final one back to coordinate 0).

In 1D mode Binary, this specifies a 2^n-bit lookup:

 ・Ver.AB supports n = 0, 1

・Ver.C supports n = 0–5

Flush In the 3D CLUT, clears the cache information of the

referenced SRAM and reloads the data.

Sel In the 3D CLUT, configures various options. (See Mode for

details.)

Mode Sets the reference mode in the 3D CLUT.

Mode Description

0

1D CLUT (Standard, Sel = '0'):

Each element indexes a 32-bit table using values from -1.0 (0x101) to 1.0 (0x100).

1D CLUT (Binary, Sel = '1'):

If Ring[0] = '0', a 17-bit table index is formed from R000, G7:07:07:0, B7:07:07:0; all

elements output either 0 (0x00) or 1 (0xFF/0x100).

If Ring[0] = '1', a 16-bit index from G7:07:07:0, B7:07:07:0 is used for a 2-bit lookup:

• MSB result applies to A

• LSB result applies to RGB

147

1

2D CLUT:

Uses a combination of R7:27:27:2 and

B7:27:27:2 to index a 32-bit table.

If Sel = '1', performs bi-linear interpolation

using R1:01:01:0, B1:01:01:0.

2

D CLUT:

Uses R7:47:47:4, G7:47:47:4, B7:47:47:4 to

index a 32-bit table.

If Sel = '1', performs tri-linear interpolation

using R3:03:03:0, G3:03:03:0, B3:03:03:0.

3 Reserved

Blut.Ext Description

0 2D/3D CLUT outputs 9 bits per element.

1

2D/3D CLUT treats the B element as 8.8

fixed-point and concatenates it with the G

and B elements for output. The MSB of the 9-

bit output per element is set to 0.

Blut.Sel Description

0 No dynamic range expansion.

1

Performs dynamic range expansion.

The table references A2:02:02:0 and adjusts low-value RGB settings accordingly.

Pre-configure the RGB table with values multiplied by 2^A[2:0].

Each of R, G, and B can have separate A2:02:02:0 values.

148

En In the 3D CLUT, specifies whether to enable processing for

each element.

If all bits are set to '0', the 3D CLUT is bypassed.

En Description

[0] Enables processing for Blue element

[1] Enables processing for Green element

[2] Enables processing for Red element

[3] Enables processing for Alpha element

5.3.1.33. BlutCntl Command

 [Address: 0x94]

31 28 24 20 16 12 8 4 0

Sel Ext En

Flush

Base[31:8] OptT[1:0]OptC[1:0]

Name Description

Base In Blender or Filter processing, sets the base address for loading

data into the referenced SRAM. Must be set in 256-byte

boundary units.

The referenced data is packed as 8 bits per word, starting from

the LSB.

If En is not '0', setting this to '0' is prohibited.

Flush In Blender or Filter processing, clears the cache information of

the referenced SRAM and reloads the data.

Sel In the 3D CLUT, configures various options. (See ClutCntl

Command for details.)

OptT Information sent as the LSB of the address to the memory

system.

Common address information for Clut and Blut.

OptC Information sent as the LSB of the address to the memory

system.

Common address information for Output Context, Histogram,

149

and Steal.

Ext In the 3D CLUT, configures various options. (See ClutCntl

Command for details.)

En In Blender or Filter processing, specifies whether the reference

is enabled.

In general, set this to '1' if any of PixelCntl*.Lut is '1', or if the

Filter references Blut.

5.3.1.34. StealCntl Command

 [Address: 0x98]

31 28 24 20 16 12 8 4 0

Mask[1:0]

Base[31:8] Comb[3:0] En[1:0]

Name Description

Base Sets the start address used by Steal. Must be set in 256-byte

boundary units.

Comb Sets the final evaluation logic for Steal.

S represents flags generated by the Filter, and D represents

flags (D) generated by the Extractor.

If set to 0, the Steal function is disabled.

Op[3:0] Description Op[3:0] Description

0 0 8 S & D

1 ~S & ~D 9 S ~^ D

2 S & ~D 10 S

3 ~D 11 S | ~D

4 ~S & D 12 D

150

5 ~S 13 ~S | D

6 S ^ D 14 S | D

7 ~S | ~D 15 1

Mask Configures how the Steal flag inversion mask (StealMask) and

the Extractor-generated mask (ExtractorMask) affect the final

mask (BlenderMask).

Mask[1:0] Description

0 BlenderMask = ExtractorMask

1 BlenderMask = 0

2 BlenderMask = ExtractorMask | StealMask

3 BlenderMask = StealMask

En Selects and executes the Steal method.

En[1:0] Description

0 NOP

1
Performs Steal at the current coordinates

(SrcX, SrcY) (available from Ver.C onward).

2
Performs Steal on Blender data (Mod)

(available from Ver.C onward).

3
Performs Steal on Blender data (Org) (available

from Ver.C onward).

151

5.3.1.35. AffineCoef0-8 Command

 [Address: 0x9c – 0xbc]
31 28 24 20 16 12 8 4 0

S Exp[7:0] Mantissa[22:0]
Name Description

S Sets the Sign bit of the IEEE 754 Binary32 (single-precision)

format.

Exp Sets the Exponent field of the IEEE 754 Binary32 (single-

precision) format.

Values 0x00 and 0xFF are not supported.

Mantissa Sets the Mantissa field of the IEEE 754 Binary32 (single-

precision) format.

5.3.1.36. FilterCntlIn/Out Command

 [Address: 0xc0/0xc4] （Ver.AB）
31 28 24 20 16 12 8 4 0

Edge[1:0]

Force[7:0] Mode[3:0] Class[3:0] En[3:0]VMask[3:0]Stride[5:0]

 [Address: 0xc0/0xc4] （Ver.C）
31 28 24 20 16 12 8 4 0

5.3.1.37. FilterCntl1 Command

Force[7:0] VMask[3:0] Mode[3:0] Class[3:0] En[3:0]Edge[3:0] Signed[3:0]

Name Description

Edge Sets the endpoint option when retrieving the filter kernel.

SrcSize must be non-zero.

Edge Description

0

If the center coordinate of the Pixel Cache

(rounded up in the signed direction) is not

within the image, the entire Pixel Cache is

replaced with PixelDefault.

If the above condition is not met, only the out-

of-bounds parts are replaced with

PixelDefault.

1 No boundary checking is performed.

2-7 Reserved

152

8
Out-of-bounds parts are replaced with

PixelDefault.

9*
Out-of-bounds parts are replaced with the

nearest pixel value.

10*
Out-of-bounds pixels are replaced with

corresponding values from a wrapped image.

11*

Out-of-bounds pixels are replaced with

corresponding values from a mirrored image

(no duplication at fold points).

12-14 Reserved

15

Out-of-bounds pixels are replaced with

corresponding values from a mirrored image

(with duplication at fold points).

 * Options 1, 9–11, and 15 are available from Ver.C onward.

Signed Configures how to interpret each input ARGB element:

・'1': Two’s complement

 ・'0': Unsigned

Stride Sets the address interval between adjacent pixels in the filter

kernel.

For Stride[5], the address interval is 2 × Stride[4:0] bytes

(Ver.AB).

Force In FilterIn, selects the data to enter the filter on a per-element

basis.

Each 2 bits from the upper side corresponds to an ARGB

element.

In FilterOut, selects the Bayer mask pattern.

・When using the BayerMask register:

 Grayscale selects 1 of 8 patterns

 Full color selects 1 set out of 4 patterns

・When using Blut:

 Grayscale selects 1 of 4

 Full color selects from a set of 4

InForce[2n-

1:2n]
Description

0 SrcIn

153

1 SrcOut (Gray)

2

Center pixel from SrcIn, surrounding pixels

from SrcOut. See diagram below.

(Coordinates in parentheses are for SrcIn and

SrcOut 3x3 kernels centered at 0.)

3 All pixels set to 1.0

VMask Masks access to horizontal lines in the kernel.

VMask Description

[0]
Masks access to lines at ±1 from the kernel

center

[1]
Masks access to lines at ±2 from the kernel

center

[2]
Masks access to lines at ±3 from the kernel

center

[3]
Masks access to lines at ±4 from the kernel

center

Mode Sets the kernel size. Must be configured according to each filter

type.

Class Specifies the type of filter. (See Mode for details.)

Differs between SrcIn and SrcOut types.

For SrcOut, the setting is fixed to Pattern filter.

154

Mode[2:0]

Class[3:0]

0
2D

Point
1 x 1 2 x 2 3 x 3 4 x 4 5 x 5

1
2D
Bi-linear

2 x 2* 4 x 4**

2
2D
Bi-cubic

4 x 4***

3 Reserved

4 Non-linear 1 x 1 2 x 2 3 x 3 4 x 4 5 x 5

5 Mask Mask Mix

6 Hamming Min Max

7 Extrema
In Check

In Out

In Check

Diff Out

Diff Check

In Out

Diff Check

Diff Out

8
2F (Ver.C)

Point
1 x 1 2 x 2 3 x 3 4 x 4 5 x 5

9
2F (Ver.C)
Bi-linear

2 x 2* 4 x 4**

10
2F (Ver.C)
Bi-cubic

4 x 4***

11
SAD/SSD

(Ver.C)
1 x 1 2 x 2 3 x 3 4 x 4 5 x 5 Reserved

12 Bitmap
32 x 25

(Ver.C*)

13~15 Reserved

Reserved

Reserved

Reserved

6 7

Reserved

5

Reserved

Reserved

Reserved

Reserved

0 1 2 3 4

Reserved

Reserved

Reserved

Reserved Reserved

Reserved

Reserved

 SrcIn types:

* 1x1 filter coefficient Coef000 is valid (1x1 is bilinearly

interpolated to 2x2)

** 3x3 filter coefficients Coef000, Coef100–107 are valid (3x3 is

bilinearly interpolated to 4x4)

 *** Filter coefficients are invalid

 SrcOut types:

 Always Pattern filter (fixed)
Mode[3:0]

Class[3:0]

0-15 Pattern 1 x 1 Reserved 3 x 3 Reserved 5 x 5 Reserved 7 x 7 Reserved

Mode[3:0]

Class[3:0]

0-15 Pattern 9 x 9 Reserved Reserved Reserved Reserved Reserved Reserved Reserved

6 7

8 9 10 11 12 13 14 15

50 1 2 3 4

En For SrcIn type, enables or disables filtering for each element.

Setting all bits to '0' bypasses filtering.

For Extrema Filter only, this acts as a flag to enable difference

calculation for Layers 0–3.

 For SrcOut type, kernel size is fixed to 1x1 only when En =

155

'1111' (not required except for Ver.AB).

En Description

[0] Enable for Blue element

[1] Enable for Green element

[2] Enable for Red element

[3] Enable for Alpha element

5.3.1.37. FilterCntlOp Command

 [Address: 0xc8]
31 28 24 20 16 12 8 4 0

InOp[7:0] InSel[7:0]OutSel[7:0]OutOp[7:0]

Name Description

OutSel In the Pattern Filter, the input reference value can be switched,

and the output data can be selected.

OutSel[2:0] Description

0 NOP

1 Reserved

2 SrcOut（Center reference ｖalue）

3 Blut[240]

4 SrcIn[7:0]（Center reference ｖalue）

5 SrcIn[15:8]（Center reference ｖalue）

6 SrcIn[23:16]（Center reference ｖalue）

7 SrcIn[31:24]（Center reference ｖalue）

OutSel[3] Description

0
Outputs the lower 32 bits of the 64-bit

boolean flag result (2 bits × 32).

1

Outputs a 32-bit result obtained by

performing a bitwise AND operation on each

2-bit pair of the 64-bit boolean flag result (2

bits × 32).

OutSel[5:4] Description

0 NOP

1
Bayer Performs mask processing.

（BayerMask Resgister Ｕｓｅ）

156

2 Reserved

3 Bayer Performs mask processing.（Blut Ｕｓｅ）

InOp Configures the filter mode for the SrcIn system.

InOp
2D/2

F
2F

None

-

linear

Mask
Hamm

ing

Extre

ma

Bitma

p

[0]
Coe

f

Set

B

Coef

Set B

Type

Set B

Comp Outpu

tData[

15:0]*

Min

Ignore

Defaul

t

[1] Const
Max

Ignore

Reser

ved

[2]
Coe

f

Set

G Reser

ved

Type

Set G
Loc

Outpu

tData[

31:16]

*

Lower

Ignore

[3]
Upper

Ignore

[4]
Coe

f

Set

R

Type

Set R
Kernel

Outpu

tOrigi

n[15:0

]*

Equal

Ignore

[5]
Alt

Ignore

[6]
Coe

f

Set

A

0: fp

out

2: ftoi

Type

Set A

Aroun

d

Outpu

tOrigi

n[15:0

]*

Zero

Ignore

[7]
Swap

• 0: Comp (Total comparison result)

1: Eval (32-bit evaluation result)

2: PosX (X-coordinate for minimum/maximum value)

3: PosY (Y-coordinate for minimum/maximum value)

For 2D/2F Filters:

Configures the coefficient placement for each element. The black numbers indicate

coefficient indices (among the 28 coefficients stored in FilterCoef000–215). The

background color denotes the index range: white for 0xx, light gray for 1xx, dark gray

for 2xx, and white-outline boxes represent fixed values (0.0 / 1.0).

For Non-linear Filters:

Configures the filter mode for each element. The composite result of the four Outputs

the value corresponding to the result of the element specified by InSel[7:6].

(i.e., the output follows the result of the selected element) elements can be

reselected and output using InSel[5:4].

157

InOp[2n+1:2n] Description

0 Minimum 5x5

1 Maximum 5x5

2 Median 3x3

3

Outputs the value corresponding to the result

of the element specified by InSel[7:6].

(i.e., the output follows the result of the

selected element)

 For Mask Fiter：Configures various modes (see Figure 25).

 For Hamming Fiter：Sets the number of inspection bits in multiples of 32 bits

(value is specified as N–1).。

 For Extrema Fiter：

InOp Description

[0]
When set to '1', minimum values are not

evaluated.

[1]
When set to '1', maximum values are not

evaluated.

[2]

When set to '1', the lowest level (0) is also

evaluated as a minimum value (a virtual level

below is treated as the minimum).

[3]

When set to '1', the highest level (InScale[2:0] –

1) is also evaluated as a maximum value (a

virtual level above is treated as the maximum).

[4]
When set to '1', equal comparison results are

also treated as extrema (max/min).

[5]

When set to '1', both maximum and minimum

information are output simultaneously (normally

exclusive, with lower hierarchy taking priority).

158

[6]

When set to '1', pixels with difference value or

pixel value of 0 are excluded from extrema

evaluation candidates.

[7]
When set to '1', swaps the outputs of SrcMod

and SrcOrg.

 For Bitmap Fiter：Sets the out-of-range bit value to InOp[0].

 InSel Selects the input and output data for the 2D, 2F, Non-linear,

Mask, Hamming, and Extrema Filters.

 Coefficient Input：

InSel[1:0] Description

0 Command List

1 Blut

2 SrcIn

3 SrcOut’

 Coefficient Operation：（Valid only for 2D/2F Filters）

InSel[3:2] Description

0 Normal

1 Reserved

2
Bilateral coefficient calculation using the

element specified by InSel[7:6]

3
Epsilon coefficient calculation using the

element specified by InSel[7:6]

 Plane Output：（From 9x9 Source Out）

InSel[5:4] Description

0
1-plane: Each filter output element is output

as-is.

159

1

2-plane:

 - 2D Filter: Output results for AR and GB are summed and output to RB.

 - Non-linear Filter: Output ARGB results as:

 B’ = min(B, G), G’ = max(B, G), R’ = min(R, A), A’ = max(R, A).

 - Other filters: Reserved.

2

4-plane:

 - 2D Filter: Output results for ARGB are summed and output to B.

 - Non-linear Filter: Output ARGB results as:

 B’ = min(B, G, R, A), R’ = max(B, G, R, A).

 - Other filters: Reserved.

3

Special plane:

 - Non-linear Filter: Uses the element specified by InSel[7:6] for output.

 - Other filters: Reserved.

 Plane Evaluation:

InSel[7:6] Description

0 Evaluate element B

1 Evaluate element G

2 Evaluate element R

3 Evaluate element A

5.3.1.38. FilterCoef00 Command (Coefficient Filter Mode)

 [Address: 0xcc]
31 28 24 20 16 12 8 4 0

S Exp[4:0] Mantissa[9:0] Ref[15:0]
Name Description

S Sets the Sign bit in IEEE754 Binary16 (half-precision) format.

Exp Sets the Exponent in IEEE754 Binary16 (half-precision) format.

0x00 and 0x1f are not supported.

Mantissa Sets the Mantissa in IEEE754 Binary16 (half-precision) format.

Ref Specifies the reference value for the filter.

Filter Class Description

2D

Multiplies the result by 2^Ref[11:8] (two's complement).

Specifies the bilateral variance via Ref[3:0] when InSel[3:2] = 2.

Specifies the epsilon threshold via Ref[7:0] when InSel[3:2] = 3.

160

2F

Multiplies the result by 2^Ref[11:8] (two's complement).

Specifies the number of invalid MSBs using Ref[15:12] (e.g., 0 means all 16 bits are valid;

6 means lower 10 bits are valid).

SAD/SSD Ref[15:0] sets the minimum value.

NL Not used

Mask Ref[11:8] specifies the Boolean algebra table.

Hamming
Ref[15:0] specifies the YMax of the polygon shape

"Rectangle."

Extrema Ref[10:8] specifies the evaluation level.

Bitmap Not used

Bilateral

Variance

Table

Description

0 Gaussian distribution with σ = 0.375

1 Gaussian distribution with σ = 0.75

2 Gaussian distribution with σ = 1.5

3 Gaussian distribution with σ = 3

4 Gaussian distribution with σ = 6

5 Gaussian distribution with σ = 12

6 Gaussian distribution with σ = 24

7 Gaussian distribution with σ = 48

8-15 Reserved

5.3.1.39. FilterCoef10-27 Command (Coefficient Filter Mode)

 [Address: 0xd0 + 2n (n = 0-24)]
31 28 24 20 16 12 8 4 0

Sn

Sn+1

Expn+1[4:0] Mantissan+1[9:0] Expn[4:0] Mantissan[9:0]

Name Description

S Sets the Sign bit in IEEE754 Binary16 (half-precision) format.

Exp Sets the Exponent in IEEE754 Binary16 (half-precision) format.

0x00 and 0x1f are not supported.

Mantissa Sets the Mantissa in IEEE754 Binary16 (half-precision) format.。

161

5.3.1.40. FilterTable Command (Mask Filter Mode)

 [Address: 0xc8 + 4n (n = 0-7)]
31 28 24 20 16 12 8 4 0

T31 T30 T29 T28 T27 T26 T25 T24 T23 T22 T21 T20 T19 T18 T17 T16 T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0
Name Description

Tx The eight registers are concatenated to form a 256-bit table.

The index for each entry is extended as x + 32n. This table is

ultimately referenced as T255–T0 by the Mask Filter.

5.3.1.41. FilterCenter Command (Mask Filter Mode)

 [Address: 0xe8]
31 28 24 20 16 12 8 4 0

DeltaUpper[7:0] DeltaLower[7:0] Val[7:0]
Name Description

DeltaUpper Used to determine the upper threshold for center pixel

evaluation by adding it to the value of Value.

DeltaLower Used to determine the lower threshold for center pixel

evaluation by subtracting it from the value of Value.

Value Specifies the reference value used for comparing the center

pixel in Mask Filter mode.

5.3.1.42. FilterAround Command (Mask Filter Mode)

[Address: 0xec]
31 28 24 20 16 12 8 4 0

DeltaUpper[7:0] DeltaLower[7:0] Val[7:0]
Name Description

DeltaUpper Used to determine the upper threshold for neighboring pixel

evaluation by adding it to either Value or the center pixel value.

DeltaLower Used to determine the lower threshold for neighboring pixel

evaluation by subtracting it from either Value or the center

pixel value.

Value Specifies the reference value used for comparing surrounding

pixels in Mask Filter mode. Used when FilterContl.Op[5] is '0'.

When set to '1', the center pixel value is selected.

162

5.3.1.43. FilterReplace Command (Mask Filter Mode)

 [Address: 0xf0]
31 28 24 20 16 12 8 4 0

A[7:0] R[7:0] G[7:0] B[7:0]
Name Description

A,R,G,B Specifies the pixel value to be used for replacement in Mask

Filter mode when the target condition is met.

163

6. Application Notes

6.1. Overall Control

6.1.1. Processing Unit

• frComp converts the intermediate coordinates into physical coordinates by

processing units and executes the operations. Shorter processing units allow

faster switching between different tasks, but may disrupt continuous access to

external memory, resulting in wasted cycles during access transitions.

• The minimum time required to load a Command List is 32 cycles. Therefore,

for frComp, which can process one pixel per cycle, it is preferable to set the

processing unit to at least 32 pixels. However, if the same Command List

continues, the loading process can be skipped. As such, even if the processing

unit is smaller than 32 pixels, it poses no issue unless frequent switching

between different Command Lists occurs.

• When using pss, it is necessary to consider the minimum task switching time

for pss (number of pipeline stages × 2 cycles). In most cases, setting the

processing unit to the total number of horizontal pixels in the image is

sufficient.

• One important consideration in Command List loading time is whether Clut

data needs to be loaded. If loading is required, a minimum of 2K cycles is

consumed for each task switch. However, since two Clut banks are available,

reloading is unnecessary if the same Clut is referenced across tasks.

• Both Clut and Blut are loaded from memory, and any change in memory

content requires cache clearing and reloading. By setting ClutCntl.Flush and

BlutCntl.Flush to '1', the cache can be cleared and reloaded at the beginning of

a frame.

• The choice of pixel format is important for memory bandwidth considerations.

For example, full-color images at 32 Bpp use four times the bandwidth of

grayscale images at 8 Bpp. This difference becomes more significant in filter

processing with a 5×5 kernel, where the bandwidth usage increases in

proportion to the kernel area or fill size. If external caches are used, the

format selection also affects whether memory access exceeds the cache

capacity.

• Contexts, Cluts, and Bluts can be defined simultaneously in any number (up to

2 in Ver.A). Since fragmentation processing overlaps with load/save

operations, it generally has no impact on performance. However, because

loading and saving occur repeatedly with each fragmentation, the amount of

164

fragmentation and number of simultaneous operations should be managed

carefully.

6.1.2. Functional Orthogonality

• Ideally, the configuration of one function should not affect others; however,

frComp has certain limitations:

o Only one of the six filters can be selected for the source coordinate

system.

o Blut is shared between the Mask Filter and the Blender and cannot be

used by both simultaneously.

o Available interpolation types are limited depending on the kernel size

used in the 2D filter.

o In Steal operations, writing to the context is required. Reading min/max

values from the context may overwrite the currently processed values,

so care must be taken.

6.1.3. Processing Symmetry

• Although each pixel consists of four independent elements, certain functions

require element-specific considerations:

o When the input format has unique characteristics (e.g., RGB565 or

YUV)

o When specific elements are fixed in calculations in Median/Mask Filters

o When 3D Clut access is fixed to particular elements in 2D/3D modes

• If element-wise processing is fully independent and no neighboring pixels are

accessed via filters, four pixels can be processed simultaneously by treating

each as one element per pixel. However, the I/O format must be treated as 32

Bpp, imposing a restriction that the pixel width must be a multiple of four. For

example, a simple transfer of a grayscale image should use a 32 Bpp I/O

format rather than 8 Bpp.

• The source coordinate system serves as the Main path and has greater

functionality than the Destination coordinate system (Sub path), resulting in

asymmetry.

Function Source Path Destination Path

Remapper

Interpolation

Nearest

Bi-linear

Nearest

Bi-linear

Affine

Transform
Yes No

165

Pixel Cache 1x1 - 5x5

1x1 - 9x9

3x3 (Extrema Filter Use)

5x5 (Correlation Use)

1x1 (Other Use)

Filter

2D

2F

Non-linear

Mask

Extrema

Bitmap

SSD/SAD

Patern

The coordinate mapping circuitry used for the Source output image (SrcOut path) and

the Destination coordinates is shared. Therefore, both mappings cannot be used

simultaneously unless they are identical. Typically, these paths are treated

exclusively.

6.1.4. Polygon Rendering

• When ShapeCntl.Type is set to '0', only fragments with the same Y coordinate

and differing X coordinates are processed (normal mode). For other values,

polygon rendering is performed based on the configured vertex values (polygon

mode). The polygon is decomposed into scanlines in the positive Y direction,

and intermediate coordinates are automatically generated. All other operations

remain unchanged.

• Since vertex values are defined using 16-bit positive integers, it is not possible

to define polygons that span negative screen coordinates or lie outside the

screen area. Such shapes must be clipped at the configuration stage.Texture

mapping is performed by combining matrix transformation and filtering (this

differs from Texture conversion). Intermediate coordinates are directly

provided as Destination coordinates (X, Y), and matrix transformation is used

to generate Texture coordinates (U, V).

• When the texture coordinates (U, V) corresponding to three vertices (X, Y) are

given, the transformation matrix M can be computed as a set of constants.

However, if the determinant of matrix V, which represents the polygon’s area,

is zero (i.e., the area is zero), a valid configuration cannot be obtained. Any

filter mode can be used in the 2D Filter, but bi-linear interpolation is commonly

applied.

・Matrix Derivation

166

Given three vertices (x0,y0),(x1,y1),(x2,y2)(x_0, y_0), (x_1, y_1), (x_2, y_2), define matrix

V as:

𝑉 = (
𝑥0 𝑦0 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

)

The coefficients of the desired transformation matrix are computed as:

(
𝑚00 𝑚01 𝑚03
𝑚10 𝑚11 𝑚13

)
𝑇

= 𝑉−1 (
𝑢0 𝑣0
𝑢1 𝑣1
𝑢2 𝑣2

)

Here, the inverse of V can be derived from the Destination coordinates (X,Y)(X, Y) as:

V−1 =
1

det (𝑉)
(

𝑦1 − 𝑦2 𝑦2 − 𝑦0 𝑦0 − 𝑦1
𝑥2 − 𝑥1 𝑥0 − 𝑥2 𝑥1 − 𝑥0

𝑥1𝑦2 − 𝑦1𝑥2 𝑦0𝑥2 − 𝑥0𝑦2 𝑥0𝑦1 − 𝑦0𝑥1
)

det (𝑉) = 𝑥0𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦0 − 𝑥0𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦0

We provide specific configuration examples and diagrams illustrating cases with and

without matrix transformation during texture mapping. In the

diagrams, parentheses indicate texture coordinates (U, V).

The matrix M is supplied to frComp in floating-point precision.

Vertex No x y u v

0 13 18 1 1
1 63 3 0 63
2 32 63 63 32

det(V) 2535

-0.023668639 0.017751479 0.00591716

-0.012228797 -0.007495069 0.019723866
1.527810651 -0.095857988 -0.431952663

0.349112426 1.230374753 -25.6852071
1.284023669 0.146745562 -18.33372781

V
-1

M

167

Figure 42 Texture Mapping

When using matrix transformation for texture mapping, there may be references

beyond the edges of the texture image due to rounding or truncation errors. To

handle this, set an appropriate range in SrcSize and configure FilteCntl.Edge so

that edge pixels are referenced even when access goes beyond the image

boundary. Alternatively, expand the texture image size to include a guard region

that safely absorbs out-of-bound accesses.

When processing pixels of arbitrary length defined by registers, a polygon shape

(Line mode) must still be specified. While coordinate values are generally

limited to 16-bit in non-Line modes, Line mode supports 32-bit linear

coordinates.

When input coordinates to frComp are specified as Xin, Yin, Zin, and Win, the
post-polygon-rendering coordinates Xp and Yp are generated as described
below. Note that when MasterCntl.Shape ≠ 0, all shape-related coordinates
Xp, Yp are generated in a single invocation of frComp.

(
𝑋𝑝
𝑌𝑝

) = (
𝑋𝑖𝑛
𝑌𝑖𝑛

) When

MasterCntl.Shape=0

(
𝑋𝑝
𝑌𝑝

) = Parallelogram(
𝑥0 𝑦0
𝑥1 𝑦1

) When

Affine

Transform

(0,63)

(63,3)

(32,63)

(13,18)

(1,1)

(63,32)

Texture

Texture Display

Display

168

MasterCntl.Shape=1

(
𝑋𝑝
𝑌𝑝

) = Rectangle(

𝑥0 𝑦0
𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3

) When

MasterCntl.Shape=2

(
𝑋𝑝
𝑌𝑝

) = Triangle (
𝑥0 𝑦0
𝑥1 𝑦1
𝑥2 𝑦2

) When

MasterCntl.Shape=3

(
𝑋𝑝
𝑌𝑝

) = Line(𝑥0 + 𝑦0 × 65536) When

MasterCntl.Shape=4

(
𝑋𝑝
𝑌𝑝

) = Line(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑑𝑎𝑡𝑎) When

MasterCntl.Shape=5

(
𝑍𝑝
𝑊𝑝

) = (
𝑍𝑖𝑛
𝑊𝑖𝑛

) When always

6.1.5. Scan Modifications

• The coordinates processed by polygon rendering can be further modified by

incorporating Z and W coordinates, regardless of whether polygon processing

is enabled. Various forms of four-dimensional scanning are supported.

• The Source pixel input system and Destination pixel input system can each be

configured independently using the settings described below. Primarily, Types

0 to 2 involve one-dimensional coordinate remapping, while Type 3 involves

two-dimensional coordinate remapping. These can be used to improve memory

access efficiency through mosaic-style addressing or to facilitate data

structure transformations.

(
𝑈0
𝑉0

) = Sel0

(

𝑋𝑜
𝑌𝑜
𝑋𝑝
𝑌𝑝
𝑍𝑝
𝑊𝑝)

, (
𝑈1
𝑉1

) = Sel1

(

𝑋𝑜
𝑌𝑜
𝑋𝑝
𝑌𝑝
𝑍𝑝
𝑊𝑝)

 *o: original, *p:

polygon

(
𝑋𝑡
𝑌𝑡
) = (𝑈0%216−𝑀𝑎𝑠𝑘𝑋 + 𝑈1 ∗ 2𝐵𝑜𝑥𝑋

𝑉0%216−𝑀𝑎𝑠𝑘𝑌 + 𝑉1 ∗ 2𝐵𝑜𝑥𝑌
) Type0

169

(
𝑋𝑡
𝑌𝑡
) = (

𝑈0/2𝑀𝑎𝑠𝑘𝑋 + 𝑈1 ∗ 2𝐵𝑜𝑥𝑋

𝑉0/2𝑀𝑎𝑠𝑘𝑌 + 𝑉1 ∗ 2𝐵𝑜𝑥𝑌
) Type1

(
𝑋𝑡
𝑌𝑡
) = (

𝑈0%216−𝑀𝑎𝑠𝑘𝑋 + 𝑈1/2𝐵𝑜𝑥𝑋

𝑉0%216−𝑀𝑎𝑠𝑘𝑌 + 𝑉1/2𝐵𝑜𝑥𝑌
) Type2

(
𝑋𝑡
𝑌𝑡
) = (

𝑈0%2𝐵𝑜𝑥𝑋 + 𝑈1/2𝐵𝑜𝑥𝑌 ∗ 2𝐵𝑜𝑥𝑋

𝑉0/2𝐵𝑜𝑥𝑋%216−𝑀𝑎𝑠𝑘𝑋 + 𝑉1/2𝐵𝑜𝑥𝑌%215−𝑀𝑎𝑠𝑘𝑌 ∗ 2𝑀𝑎𝑠𝑘𝑋
) Type3

Figure 43 Index Map of Type3

Although scan modification is typically unnecessary for the Destination pixel

input system, it may be used when connecting the Destination pixel input

system to the SrcOut path for operations such as cross-correlation.

6.2. Coordinate Operations

6.2.1. Mapping Data

The Remapper generates Source and Destination coordinates from intermediate

coordinates. In general, the intermediate coordinates are set equal to the Destination

coordinates. In the following explanation, intermediate coordinates are denoted as

(Xt,Yt)(X_t, Y_t). Note that the coordinates generated by polygon scan traversal are

also considered intermediate coordinates.

The Source coordinates (Xs,Ys)(X_s, Y_s) and Destination coordinates (Xd,Yd)(X_d,

Y_d) corresponding to the intermediate coordinates (Xt,Yt)(X_t, Y_t) are obtained using

mapping data. Mapping data can be expressed as either absolute or relative values.

The mapping data (Xm,Ym)(X_m, Y_m) uses two’s complement representation, which

differs from the representation format of the intermediate coordinates (Xt,Yt)(X_t, Y_t)

that are directly input to frComp. Be aware that in memory, coordinate data is stored

with Y in the upper 16 bits (MSB) and X in the lower 16 bits (LSB).

(Xm, Ym)
𝑎𝑐𝑐𝑒𝑠𝑠
← map(BaseAddr + 4 ∙ Yt/2𝐷𝑖𝑣 ∙ Stride + 4 ∙ Xt/2𝐷𝑖𝑣)

BoxY 16-MaskYVBoxX16-MaskXU

16-MaskXBoxXBoxY 16-MaskYV’U’

170

Here, BaseAddress indicates the starting address of the mapping data; Stride defines

the memory increment when Y_t changes; and Div specifies the subdivision factor.

• The mapping data (Xm,Ym)(X_m, Y_m)(Xm,Ym) is processed into the mapped

coordinates (Xr,Yr)(X_r, Y_r)(Xr,Yr) using the following transformation. An

arbitrary fractional precision Prec can be specified. Setting the fractional

precision improves the accuracy of interpolation performed by the subsequent

filter stage.

(Xr, Yr) =

BiLiner [
(𝑋𝑚00, 𝑌𝑚00) (𝑋𝑚01, 𝑌𝑚01)

(𝑋𝑚10, 𝑌𝑚10) (𝑋𝑚11, 𝑌𝑚11)
]

2𝑃𝑟𝑒𝑐
+ (Xa, Ya)

Here, BiLiner[] refers to the bi-linear interpolation function, where the indices of

(Xm,Ym)(X_m, Y_m) represent the positions of the four neighboring samples. Prec

denotes the fractional precision setting. (Xa,Ya)(X_a, Y_a) represents an offset: it is

set to (0,0)(0, 0) for absolute values, or to (Xt,Yt)(X_t, Y_t) for relative values.

• The transformation from intermediate coordinates (Xt,Yt)(X_t, Y_t) to Source

and Destination coordinates can be configured independently. These are

denoted as (Xrs,Yrs)(X_{rs}, Y_{rs}) for Source coordinates and (Xrd,Yrd)(X_{rd},

Y_{rd}) for Destination coordinates.

Finally, the Source coordinates are computed by applying a matrix

transformation to the mapped values.

(
𝑋𝑠
𝑌𝑠
) = (

𝑋𝑡/𝑍𝑡
𝑌𝑡/𝑍𝑡

), (
𝑋𝑡
𝑌𝑡
𝑍𝑡
) = (

𝑚00 𝑚01 𝑚02
𝑚10 𝑚11 𝑚12
𝑚20 𝑚21 𝑚22

)(
𝑋𝑟𝑠
𝑌𝑟𝑠
1
)

(
𝑋𝑑
𝑌𝑑

) = (
𝑋𝑟𝑑
𝑌𝑟𝑑

)

• The above description implies that matrix transformation precedes Source

coordinate calculation. Conceptually, this means that the Source image is first

inverse-transformed—e.g., translated or rotated—before being mapped. Note

that this is the reverse of the actual hardware processing order and must be

handled with care.

171

• The mapping data (Xm,Ym)(X_m, Y_m) can be consolidated into square regions

of size 2Div×2Div2^{Div} \times 2^{Div}, depending on the subdivision level

Div. For example, if Div = 4, the region from Destination coordinate (0, 0) to

(15, 15) can be represented using a single (Xm,Ym)(X_m, Y_m) value. Although

this discrete sampling introduces approximation errors, the Interp[] mechanism

reduces this error by applying bi-linear interpolation using the four adjacent

mapping data points, based on the remainder after dividing the intermediate

coordinate by 2Div2^{Div}. The value of Div should be selected as a trade-off

between compressing the mapping data (larger Div) and tolerable

approximation error.

• In the mapping data, the value 0x8000 functions as an escape code. Its

behavior differs depending on whether it is used in the Source or Destination

Remapper:

o In the Source Remapper, it holds the previously accessed value (data

retention).

o In the Destination Remapper, it acts as a drawing mask.

This escape code is particularly useful when processing arbitrary shapes. For

instance, in mappings derived from motion vectors, escape codes can be

embedded in regions that should not be processed. Note that the escape code

feature can also be disabled if needed.

6.2.2. Polar Coordinate Transformation

• In polar coordinate transformation, consider the case where mapping from

Destination coordinates to Source coordinates is specified one-to-one for

each pixel. When the Destination coordinates (Xd,Yd)(X_d, Y_d) represent polar

coordinates—with XdX_d as the angle and YdY_d as the radius—the

corresponding Source coordinates (Xs,Ys)(X_s, Y_s) can be calculated using

the following formulas:

 Xs =
𝑌𝑑

2
cos (

2𝜋

𝑊𝑥
𝑋𝑑) +

𝑊𝑦

2
 Ys =

𝑌𝑑

2
sin (

2𝜋

𝑊𝑥
𝑋𝑑) +

𝑊𝑦

2

• In this case, the Destination coordinates are directly assigned from the

intermediate coordinates, while the Source coordinates are derived using the

Source Remapper. By scanning through the Destination coordinates

(Xd,Yd)(X_d, Y_d)(Xd,Yd), the corresponding Source coordinates (Xs,Ys)(X_s,

Y_s)(Xs,Ys) can be obtained. These values are then sampled and stored as

mapping data. To ensure that the resulting coordinates (Xs,Ys)(X_s, Y_s)(Xs,Ys)

172

do not exceed 0xFFFF, they are scaled by a factor of 2n2^n2n, where nnn is a

common multiplier. The translational component in the above formula may

alternatively be handled through matrix transformation.

• The resulting coordinates are packed into 32-bit words in the format

{Ys,Xs}\{Y_s, X_s\}{Ys,Xs} and stored in memory (note that the order is

Ys,XsY_s, X_sYs,Xs). The memory layout generally follows the same

arrangement as the Destination image, though the stride can be configured

independently.

• The value of nnn, which represents the precision, is specified via

SrcMapInfo.Prec. Since a maximum value of 7 can be set, nnn must also be 7

or less. A value of 0 is also valid.

nnn indicates the number of fractional bits used to represent subpixel

precision; higher values of nnn improve the accuracy of subsequent bi-linear

interpolation and are advantageous for image quality.

Figure 44 Polar Transfer

6.2.3. Spherical Transformation

• When projecting 3D information, it is necessary to convert the data to screen

coordinates, similar to 3D graphics rendering. Corresponding mapping data

must be prepared in advance.

For example, to create an image projected onto a hemispherical surface with

radius L, the mapping data should be configured such that the sampling

intervals are wider near the center of the hemisphere and become denser

toward the boundary.

• The variation in sampling interval corresponds to the relative distance from the

defined intermediate coordinates. This relative coordinate (ΔX,ΔY)(\Delta X,

\Delta Y) can be derived from the distance (dX,dY)(dX, dY) between a given

point and the center of the hemisphere, using the following expressions.

If the condition dX2+dY2>L2dX^2 + dY^2 > L^2 is met, the mapping is not

applied, and the mapping data is set to zero ('0').

θ

r

x

y

θ
r

173

As described in the section on polar coordinate transformation, it is

recommended to ensure at least 4 bits of fractional precision to improve

accuracy.

∆X = 𝑑𝑋 ∙ cos−1
√𝑑𝑋2+𝑑𝑌2

𝐿
÷ 2𝜋 ∆Y = 𝑑𝑌 ∙ cos−1

√𝑑𝑋2+𝑑𝑌2

𝐿
÷ 2𝜋

 Figure 45 Crystal Ball Transfer

6.2.4. Free-form Deformation

• By generating coordinate mapping data for each screen pixel, a wide range of

free-form deformations can be achieved.

When applying free-form deformation, special attention must be paid to how

unmapped regions are handled, as well as to mitigating visual artifacts that

may arise from overly sparse or dense sampling.

• Unmapped areas should be handled by intentionally modifying the mapping data

so that they result in a specific color. If no special handling is applied, the

default behavior is to use the PixelDefault value.

 Default Color

Figure 46 Free Deformation

174

・Sampling density can be determined by examining the distance between adjacent

coordinate

In the mapping data used during coordinate transformation. Larger distances indicate

sparser

sampling, which increases the likelihood of aliasing artifacts.

6.2.4.1. Abstraction

• Image abstraction (Texture conversion) can be achieved by reading from a

texture based on the luminance and position of the image. This processing can

be performed on either the Source or Destination side.

Since it is handled by the Remapper, coordinate mapping cannot be used in

this case.

• The example shown below demonstrates a one-pass process in which the

original image is abstracted in the Destination path, edges are extracted in the

Source path, and text is composited using the Blender.

 Figure 47 Cartooned Picture

• Unlike standard texture mapping described in the polygon rendering section,

this technique selects tile patterns based on luminance values and samples

them using intermediate coordinates. This enables expression of luminance

with reduced data—similar to dithering. For example, it is equivalent to binary

halftoning used in newspaper photographs.

• The presence of texture processing is controlled using SrcMapInfo.Div or

DstMapInfo.Div, while the texture size N is specified using SrcMapInfo.Prec or

DstMapInfo.Prec.

The textures are stored in memory, and N²-sized texture tiles are prepared for

256 possible luminance levels I (up to a maximum of 64K textures).

Texture formats are freely selectable, ranging from grayscale to full color.

• Prior to texture access, the Source Remapper or Destination Remapper

generates new coordinates. The original image is read, a grayscale element is

selected and used as the luminance value I, which becomes the new Y

175

coordinate. Meanwhile, the intermediate coordinates (X,Y)(X, Y) are packed to

form the new X coordinate.

The bit width of luminance I (either 8-bit or 16-bit) is selectable via

SrcMapInfo.Exp or DstMapInfo.Exp.

• To ensure the packed intermediate coordinates (X,Y)(X, Y) do not exceed the

texture size N², a coordinate mask width N (ranging from 1 to 256) is specified

using SrcMapInfo.Prec or DstMapInfo.Prec.

• Finally, for the SrcIn system, texture-related information must be set in

SrcInInfo and SrcInBase.

For the SrcOut system, the corresponding settings are made in SrcOutInfo

and SrcOutBase.

Using the newly computed coordinates, the texture data stored in memory is

accessed and read accordingly.

Figure 48 Texture Value Selection

6.2.5. Affine Transformation

6.2.5.1. Parameter Settings

Remapper

Memory: Picture

Memory: Texture Pattern

NxN

new

Y

0 1 254 255

I

R G B
2

8

5

8

1

8

X Y Y%N X%N

new

X

Filter (SrcIn) /

Envelope (SrcOut)

Initiator

I

176

• Matrix transformation is used for 2D image transformations. Operations such

as translation, scaling, rotation, and other coordinate transformations are

applied to the Source image.

These transformations are achieved by modifying the values in the

transformation matrix and can also be combined with coordinate mapping.

(
𝑋𝑠
𝑌𝑠
) = (

𝑋𝑡/𝑍𝑡
𝑌𝑡/𝑍𝑡

), (
𝑋𝑡
𝑌𝑡
𝑍𝑡
) = (

𝑚00 𝑚01 𝑚02
𝑚10 𝑚11 𝑚12
𝑚20 𝑚21 𝑚22

)(
𝑋𝑟𝑠
𝑌𝑟𝑠
1
)

• All parameters must be specified in single-precision floating-point format.

Negative values are allowed; however, special values such as NaN (Not-a-

Number) and Infinity (∞) are not permitted.

The final computation result is converted to a fixed-point format with 4 bits of

fractional precision and passed to the 2D Filter.

• The following section provides simple examples of matrix transformations. As

previously mentioned, these operations can be combined by appropriately

configuring the matrix values.

6.2.5.2. Translation

• To apply a translation to the Source image, use the following matrix in the

transformation process.

Here, dx represents the translation distance in the X-axis direction, and dy in

the Y-axis direction.

From the perspective of the Destination coordinates, positive values cause the

Source image to shift to the right (X-axis) or downward (Y-axis), assuming the

monitor origin is located at the top-left corner.

(
1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

)

6.2.5.3. Mirroring (Flip)

• To horizontally flip the Source image, apply the following matrix in the

transformation process.

Wx denotes the width of the image.

(
−1 0 𝑊𝑥 − 1
0 1 0
0 0 1

)

177

• Similarly, to vertically flip the Source image, apply the following matrix in the

transformation process.

Wy denotes the height of the image.

(
1 0 0
0 −1 𝑊𝑦 − 1
0 0 1

)

6.2.5.4. Scaling

• To scale the Source image, apply the following matrix in the transformation

process.

Mx and My represent the scaling factors in the X and Y directions,

respectively.

A value of 1.0 indicates no scaling (1:1), values greater than 1.0 perform

downscaling, and values less than 1.0 perform upscaling.

The transformation is applied with the image origin at coordinate (0, 0).

(
𝑀𝑥 0 0
0 𝑀𝑦 0
0 0 1

)

6.2.5.5. Rotation

• To rotate the Source image around its center (Wx/2,Wy/2)(Wx/2,

Wy/2)(Wx/2,Wy/2), apply the following matrix in the transformation process.

θ\thetaθ represents the rotation angle; a positive value indicates

counterclockwise rotation, while a negative value indicates clockwise rotation.

(
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑑𝑥
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝑦
0 0 1

)

At this point,

dx =
𝑊𝑥

2
(1 − cos𝜃) +

𝑊𝑦

2
𝑠𝑖𝑛𝜃

dy = −
𝑊𝑥

2
𝑠𝑖𝑛𝜃 +

𝑊𝑦

2
(1 − 𝑐𝑜𝑠𝜃)

178

 ・When rotation is combined with scaling, the transformation is applied as shown

below.

Since the transformation is based on the Destination coordinates, note that the

matrix computation is inverted relative to the usual Source-based transformation.

(
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑑𝑥
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝑦
0 0 1

)(
𝑀𝑥 0 0
0 𝑀𝑦 0
0 0 1

)

= (
𝑀𝑥 ∙ 𝑐𝑜𝑠𝜃 −𝑀𝑦 ∙ 𝑠𝑖𝑛𝜃 𝑑𝑥
𝑀𝑥 ∙ 𝑠𝑖𝑛𝜃 𝑀𝑦 ∙ 𝑐𝑜𝑠𝜃 𝑑𝑦

0 0 1

)

 At this point,

dx =
𝑊𝑥

2
(1 −𝑀𝑥 ∙ cos𝜃) +

𝑊𝑦

2
𝑀𝑦 ∙ 𝑠𝑖𝑛𝜃

dy = −
𝑊𝑥

2
𝑀𝑥 ∙ 𝑠𝑖𝑛𝜃 +

𝑊𝑦

2
(1 −𝑀𝑦 ∙ 𝑐𝑜𝑠𝜃)

・When rotation results in regions that have no corresponding Source image pixels, the

generated pixels are determined according to the specified edge handling method.

Depending on the configuration, the system may assign the PixelDefault value, use

the nearest neighboring pixel, or apply a mirrored (wrapped) pixel.

These edge handling choices have no impact on performance.

Figure 49 Rotation and Edge Correction

6.3. Image Attributes

6.3.1. Input Format

• frComp provides three pixel value input interfaces: SrcIn, SrcOut, and DstIn.

Each interface supports freely selectable pixel formats.

Additionally, both SrcIn and SrcOut include circuits that approximate grayscale

Cut

Default Color

Destination
Window

Default Color
or

Edge Copy

Pixel Cache

179

values from RGB inputs.

Based on the selected format, the grayscale result can be assigned either to

element A alone or to all elements.

• To handle memory endianness adjustments as well as element reordering and

duplication, swap settings are available via SrcInInfo.Swap, SrcOutInfo.Swap,

and DstInInfo.Swap.

The swap circuitry allows arbitrary 8-bit segments to be remapped to any 8-

bit storage positions.

After swapping, data is converted into an internal 4-element representation

according to the configured format.

Figure 50 Source Swap and Formatter

• The grayscale values generated in the SrcIn and SrcOut paths can be copied

to either element A or all elements, depending on the format settings

(SrcInInfo.Format/Swap, SrcOutInfo.Format/Exp, DstInInfo.Format/Swap).

Grayscale generation assumes the input pixel is in the RGB color space;

therefore, it is not applicable to pixels in other color spaces.

For YUV formats, the luminance component Y is used instead of a grayscale

value and can be copied to element A or all elements (configurable via format

or swap settings).

• Grayscale values are approximately generated using the formula below.

If precise grayscale values are required rather than approximations, a

grayscale image must first be generated using a 3D CLUT.

Gray =
2𝑅𝑒𝑑 + 5𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒

8

• If a grayscale image is already available, it should be read using an 8 Bpp

format. In this case, the grayscale value is assigned to all elements.

For images where the grayscale value is embedded in element A, use a 32 Bpp

format. In this case, by default, only element A will be assigned the grayscale

Swap

Matrix

from

Memory

8bit

8bit

8bit

8bit

Formatter
to

Pipeline

A

R

G

B

180

value.

To assign the grayscale value to all elements, use the Swap setting to

replicate it across elements.

6.3.2. Output Format

• frComp provides a pixel value output interface via the DstOut path.

Unlike input processing, Swap and format settings (DstOutInfo.Format/Swap)

are applied in the reverse direction.

There is no built-in grayscale generation function in the output stage.

Figure 51 Destination Swap and Formatter

6.3.3. Width and Address

• The input image width and base address must be configured separately for the

SrcIn, SrcOut, and DstIn paths.

Image attributes are fully defined by specifying the pixel-stride (address

update interval in pixels) using SrcInInfo.Stride, SrcOutInfo.Stride,

DstInInfo.Stride, and DstOutInfo.Stride;

the starting address using SrcInBase.Addr, SrcOutBase.Addr, DstInBase.Addr,

and DstOutBase.Addr;

and the image format as previously described.

• The upper bounds of the input image are specified for edge handling using

SrcSize and DstSize, while the lower bounds are fixed at zero.

Refer to the matrix transformation examples for more details on edge handling

behavior.

Swap

Matrix

from

Pipeline

8bit

8bit

8bit

8bit

Formatter

A

R

G

B

to

Memory

181

6.3.4. Attribute Conversion

• Image attribute conversion—such as format, width, and address—can be

executed by configuring the DstIn (SrcIn) and DstOut paths and performing a

BitBlt (Bit Block Transfer) operation.

Image offsets for BitBlt are configured via SrcOffset and DstOffset.

• Avoiding use of the SrcIn path reduces consumption of external resources

such as caches, and is therefore advantageous for executing multiple tasks in

parallel.

On the other hand, using the SrcIn path enables richer image processing

features such as scaling and alpha blending.

Select the appropriate configuration based on the application requirements.

Figure 52 Property of Picture

6.4. Filter Settings

6.4.1. Filter Selection

• For processing the Source image, only one filter can be selected from the

following seven types: 2D/2F, Non-linear, Mask, Hamming, Extrema, SAD/SSD,

and Bitmap.

To disable filtering entirely, set all bits of FilterCntlIn.En to '0'.

• For processing the Destination image, only the Pattern filter is available.

To disable filtering, set all bits of FilterCntlOut.En to '0'.

• The size of the pixel cache must be configured based on the selected filter

and kernel size.

Some filters impose restrictions on usable kernel sizes. Larger kernels

increase memory access frequency, potentially degrading performance.

• Depending on the kernel size, it may not be possible to assign arbitrary

coefficients to all elements.

X

Y

Line N

Line N+1

Memory

Stride

Format

Out of

bounds

Line 0

Base

Affect Edge Option

182

For example, a 5×5 filter requires 100 coefficients to support 4 elements, but

only 27 coefficients can be supplied through the Command List.

If the filter exhibits symmetry, such as in a Gaussian filter, 24 coefficients may

be sufficient to cover all 4 elements, allowing per-element coefficient

assignment.

• When using Blut, it is possible to provide filter coefficients as follows:

5×5 kernel → 4 elements,

7×7 kernel → 2 elements,

9×9 kernel → 1 element.

6.4.1.1. 2D / 2F Filter

• In addition to low-pass and high-pass filters, general-purpose filters such as

Sobel and Laplacian can be used.

Coefficients are supplied in half-precision floating-point format.

2D Filter performs fixed-point operations on all 4 elements simultaneously,

while 2F Filter performs half-precision floating-point operations on a single

element.

• In the 2D Filter, coefficients are scaled using a factor of 2ⁿ to maximize

dynamic range and improve precision, ideally bringing values close to ±2.0.

Final scaling is applied using 2⁻ⁿ (specified in FilterCoef13.Scale).

A pixel value of 256 is internally normalized to 1.0.

Output values are clipped to the range (–1.0, +1.0].

Value handling options, such as absolute value or negative suppression, can be

configured via FilterCntl.Op.

• In the 2F Filter, the results remain in half-precision floating-point format.

Since downstream blocks like Envelope and Clut operate on 8-bit paths,

conversion to 8-bit output must be specified when using these functions

(MasterCntl.Inword).

While Blender's standard 8-bit features cannot be used, its floating-point

accumulator remains available.

• If negative coefficients are used, the resulting output may be negative.

Negative values are retained up to the Blender stage; however, when using the

2D/3D mode of the 3D Clut, adjustment is required (MasterCntl.Inword)

because this mode does not support negative values.

In such cases, subtraction of a constant in the Blender stage is necessary.

• For kernel sizes of 2×2 or smaller, four coefficient sets can be selected per

element.

For 3×3 kernels, three sets can be selected per element.

For 4×4 and larger kernels, only one coefficient set is supported, but options

183

such as transposition or constant values (All 1.0 or All 0.0) can be specified

per element.

• For example, in morphological operations, using a 3×3 kernel:

dilation coefficients can be assigned to element B, and erosion coefficients to

element G, enabling simultaneous dilation and erosion.

6.4.1.2. Arbitrary Coefficients and Interpolation

• When combining arbitrary coefficients with interpolation, the required kernel

size must be one level larger.

For example, a 3×3 coefficient set requires a 4×4 kernel.

This adjustment is handled automatically by frComp, but limitations on

coefficient selection should be noted in advance.

• Only combinations with kernel sizes of 1×1 or 3×3 are supported, and only

bi-linear interpolation is available (bi-cubic is not supported).

Note that when interpolating 3×3 coefficients, the internal kernel becomes

4×4, reducing the selectable coefficient sets from 3 to 1.

• Higher-order interpolation yields smoother images.

The figure below shows results of enlarging a 4×4 repeated image to 64×64

using different modes.

Interpolation is anchored at the origin (0,0) of the original coordinate space.

For example, if an image is enlarged by an integer factor N and then

downscaled by 1/N, it will be restored to the original regardless of

interpolation mode.

If the interpolation grid needs to be centered between pixels, a translation

must be applied via matrix transformation.

• The sampling relationship between the input and output image is governed by

the affine transformation matrix.

If the scale factor is a ratio of integers, the same source pixel may map to

multiple output pixels according to the greatest common divisor.

For instance, scaling by 1/2 will map 2 input pixels to 1 output pixel, potentially

causing aliasing.

To avoid this, apply a fractional offset (e.g., ±0.5) in the matrix to shift

sampling points.

184

Figure 53 Comparison of Interpolation Mode

6.4.1.3. Sobel Filter

• The Sobel filter, commonly used for edge detection, is typically applied to

grayscale images (refer to relevant literature for detailed background).

It is assumed that the grayscale values are stored in element A.

• A horizontal filter is applied to element B, and a vertical filter is applied to

element R.

Representative 3×3 coefficients are shown below.

Note that the actual coefficients are normalized by multiplying by 1/2 so that

their values remain below 2.

[

− − −

] [
 −
 −
 −

]

• When applying a pre-processing filter such as an averaging or Gaussian filter,

and the filter size is 3×3 or smaller, its coefficients can be pre-multiplied

(superimposed) onto the Sobel filter coefficients.

The example below shows a new set of 5×5 coefficients created by

superimposing a 3×3 Gaussian filter onto the Sobel filter.

• Note that for 5×5 filters, arbitrary coefficients cannot be assigned per

element; however, transpose (diagonal symmetry) can be specified individually

for each element.

In this case, the configuration sets no transpose for element B and transpose

enabled for element R.

Nearest Bi-linear Bi-cubic

185

 𝟔
[

 𝟒

] ° [

− − −

] =

 𝟔

[

 𝟒 𝟔 𝟒
 𝟖 𝟖

− −𝟖 − −𝟖 −
− −𝟒 −𝟔 −𝟒 −]

 𝟔
[

 𝟒

] ° [
 −
 −
 −

] =

 𝟔

[

 𝟒 −𝟒 −
𝟒 𝟖 −𝟖 −𝟒
𝟔 − −𝟔
𝟒 𝟖 −𝟖 −𝟒
 −𝟒 −]

 As a result of the 2D Filter, element B contains the horizontally differentiated

values, and element R contains the vertically differentiated values.

These are 9-bit signed values. To enable 2D transformation in the subsequent 3D

CLUT, they are converted to 8-bit format (MasterCntl.Inword).

 In the 3D CLUT, a 2D transformation is performed using elements R and B,

enabling non-linear processing.

The 2D transformation uses the upper 6 bits of each element (R and B), forming a 12-

bit index to a 4K-word lookup table.

When preparing the table, take care to handle the signed nature of the 8-bit values by

subtracting an offset of 32, and use it to compute the corresponding luminance

values.

Intensity = √𝑅2 + 𝐵2

for (r = 0; r < 64; r++)

 for (b = 0; b < 64; b++) {

 x = b - 32;

 y = r - 32;

 put(r, b, sqrt(x * x + y * y));

 }

• The 3D CLUT can be configured by assigning the same value to all table

entries and then performing post-processing in the Blender.

Alternatively, the Extractor can be used to apply a threshold and binarize the

result.

In such cases, a thresholded table may be pre-defined within the 3D CLUT to

simplify processing and generate the final image accordingly.

186

Figure 54 Sobel Filter Result

6.4.1.4. Canny Filter

• Another commonly used edge detection method is the Canny filter (refer to

standard literature for detailed algorithms).

The Canny filter builds upon the output of the Sobel filter, applying further

processing steps.

Due to the sequential nature of these operations, intermediate results must be

written to memory, and the final result cannot be generated in a single pass

like the Sobel filter.

Additionally, hysteresis thresholding, which handles edge continuity and

intensity refinement, must be performed by a separate engine or the CPU.

• As a prerequisite, the 3D CLUT used in conjunction with the Sobel filter must

be extended to include gradient regions in addition to luminance values.

These gradient regions are generated simultaneously with intensity values,

using the RB elements resulting from the Sobel filter.

tan 𝜃 =
𝑅

𝐵

if -0.4142<tanθ≦0.4142 then 0

if -2.4142 <tanθ≦-0.4142 then 1

if 2.4142<|tanθ| then 2

if 0.4142 <tanθ<2.4142 then 3

• With the above settings, frComp is activated (Pass 1), and the results are

temporarily written to memory.

The contents are essentially the same as those from the Sobel filter, but with

gradient region information (ranging from 0 to 3) embedded into element G.

Additionally, a Gaussian filter is applied concurrently with the Sobel filter.

• Next, non-maximum suppression is performed using the gradient region data.

This thinning process is implemented using the Mask Filter in Con mode.

Based on the gradient region information, comparisons are made between the

187

center pixel and its neighbors in a 3×3 kernel.

For each gradient region, a corresponding mask pattern is used:

o Gradient region 0 (horizontal): 0x000CE000 (compare left and right)

o Gradient region 1 (diagonal / ↘): 0x00C00E00

o Gradient region 2 (vertical): 0x0C0000E0

o Gradient region 3 (diagonal / ↙): 0xC000000E

• Among the per-pixel operations, 0xC and 0xE evaluate to true when the

center pixel is greater than its neighbor.

0x0 always evaluates to true.

0xE includes equality to avoid suppressing pixels with equal gradient values.

Note that the mask group index shown in the figure excludes the center pixel;

the mask pattern is generated based on this index.

To ensure the center pixel value is not a factor in evaluation, FilterInMask

should be set to 0xFFFFFFFF.

Figure 55 Mask Pattern

 When frComp is executed with the above settings (Pass 2), a grayscale output is

obtained.

In this pass, approximate binarization can be achieved by configuring a threshold in

the Extractor block.

The examples below illustrate simple thresholding (Threshold = 40) and hysteresis

thresholding (Low = 32, High = 48).

 The latter (hysteresis thresholding) provides better results, with reduced noise

and improved edge continuity.

However, the former also provides a reasonably accurate approximation suitable for

many use cases.

3

5

1 2

4

6 7

0

Domain

00

3

3
2

21

1

Mask Group

35 12467 0

Setting Pattern

000ce000 → Use domain0
00c00e00 → Use domain3
0c0000e0 → Use domain2
c000000e → Use domain1

188

Figure 56 Canny Filter Result

6.4.1.5. Bilateral Filter

• The Bilateral Filter is used when edge-preserving smoothing is required.

It is a type of non-linear filter that, during Gaussian-based smoothing,

modulates the influence of neighboring pixels based on their difference from

the center pixel—thereby preventing edge blurring.

The influence (weight) on the filter coefficients is generally defined according

to a Gaussian distribution.

• The Gaussian filter coefficients used within the 2D Filter are not described

here.

The coefficient weights based on pixel differences (following a Gaussian

distribution) are determined using the sharpness parameter σ and are

configured via the Blut table.

Since Blut is also used by the Blender, it must be managed exclusively.

Additionally, accessing the Blut table is circuit-intensive and may not be

implemented in certain cases.

In such cases, predefined Gaussian patterns for various σ values can be

selected via FilterCntl1.Value.

• To enable bilateral filtering, set FilterCntl1.Op[1:0] = 2 in the filter control

register.

The pixel component used to evaluate differences (for weight computation) is

specified by FilterCntl1.Op[3:2].

Typically, SrcInInfo.Format and Exp are configured so that grayscale values

(automatically computed from RGB) are stored in element A, and '3' is set to

select that component.

• While the 2D Filter's Gaussian coefficients remain constant, the scaling

coefficients (weights) vary per pixel depending on the pixel differences.

Therefore, per-pixel normalization must be applied.

Normalization involves the following two operations:

o Set FilterCntl0.InForce[7:6] = 1 to assign a fixed value of 0xFF (1.0) to

element A.

Simple Threshold

Th=40

Histeresis Threshold

Th.low=32, Th.high=48

189

After filtering, the sum of the weights becomes the new value of

element A (i.e., the filter energy).

o In the Blender, divide elements RGB by element A.

This operation serves as the normalization step.

• Below is an example of Gaussian coefficients for a 5×5 2D Filter.

The effective coefficients are automatically modulated based on the

configured σ value and the difference between the center and surrounding

pixels. The available σ values range from 0.75 up to 48 in powers of two.

Figure 60 shows the relationship between pixel intensity difference and weight

scaling for σ values of 6, 12, 24, 48, and 96.

𝟒

[

𝟔𝟒

𝟒

𝟔𝟒

𝟔

𝟔𝟒

𝟒

𝟔𝟒

𝟔𝟒
𝟒

𝟔𝟒

 𝟔

𝟔𝟒

 𝟒

𝟔𝟒

 𝟔

𝟔𝟒

𝟒

𝟔𝟒
𝟔

𝟔𝟒

 𝟒

𝟔𝟒

 𝟔

𝟔𝟒

 𝟒

𝟔𝟒

𝟔

𝟔𝟒
𝟒

𝟔𝟒

 𝟔

𝟔𝟒

 𝟒

𝟔𝟒

 𝟔

𝟔𝟒

𝟒

𝟔𝟒

𝟔𝟒

𝟒

𝟔𝟒

𝟔

𝟔𝟒

𝟒

𝟔𝟒

𝟔𝟒]

Figure 57 Modeified Normal Distribution

The following images are shown for comparison: the original image, results with

FilterCntl1.Value set to 4 (σ = 6) and 6 (σ = 24), and an image processed using only

the 2D Filter.

While the results also depend on the specific coefficients used in the 2D Filter, it can

0

0.2

0.4

0.6

0.8

1

-128 -96 -64 -32 0 32 64 96 128

6 12 24 48 96

190

be observed that fine patterns are suppressed when σ = 24—in contrast to a

standard Gaussian filter, which causes the entire image to appear blurred.

Figure 58 Bilateral Filter Results

6.4.1.6. Cross-Correlation

• Cross-correlation between images can be performed by dynamically assigning

another image as the coefficient set. This uses a 5×5 2D Filter.

The correlation result is written to memory as pixel data.

By storing results with 16-bit precision and accumulating across multiple

passes, correlations larger than 5×5 can be computed.

• Set the SrcIn path to the base image and the SrcOut path to the reference

image.

While various formats can be used for the reference image on the SrcOut

path, only element B can be used as a coefficient.

For example, if using a 32 Bpp format image (SrcOutInfo.Format = 3), setting

SrcOutInfo.Exp = 3 allows grayscale values to be mapped to all elements,

which can then be used.

To reference specific elements, modify SrcOutInfo.Swap (only valid for 32 Bpp

formats).

• The reference image on the SrcOut path can be addressed either relatively to

the SrcIn image or absolutely using coordinates set in the Destination

Remapper.

In relative mode, for each pixel in the base image, a 5×5 region in the

reference image is convolved.

By shifting this relative position and accumulating the results, local

correlations with surrounding pixels can be computed.

The relative position is set using DstOffset.

• Additionally, the indexing method for the SrcOut image can be assigned to

separate coordinates from those used for the SrcIn image.

The SrcIn image is scanned using coordinates (X, Y), while the SrcOut image is

scanned using (Z, W).

This is useful when evaluating correlation against a specific pattern indicated

by (Z, W).

Original Bilateral σ=6 Bilateral σ=24 Only Gaussian

191

To shift patterns every 5×5 block (or simplified 4×4), use the Destination

Remapper.

• The processing time for full cross-correlation over large images is proportional

to the square of the number of pixels.

For example, if both source coordinates (X, Y) and reference coordinates (Z,

W) are scanned using pss—at 4×4 granularity (1/16),

the minimum required cycles would be (Xmax × Ymax × Zmax × Wmax) /

16.

Therefore, caution is advised when handling large images.

• For normalization, the energy of the filter region must be computed for both

the base and reference images.

To compute the energy of the SrcIn image, set all values of the SrcOut image

to 1.0.

Conversely, to compute the energy of the SrcOut image, set all values of the

SrcIn image to 1.0.

The following is an example of grayscale image correlation using a 5×5 filter:

• Configure both SrcIn and SrcOut paths to reference grayscale images.

(For SrcIn, use a format and exponent setting so that all ARGB elements are

mapped to grayscale: SrcInInfo.Format, SrcInInfo.Exp)

• Set FilterCntl1.Sel[5:4] = 3 so that element R uses coefficients all set to 1.0,

and computes the 5×5 energy of the SrcIn image.

• Set FilterCntl0.DataSel[1:0] = 3 so that element B uses values all set to 1.0,

and computes the 5×5 energy of the SrcOut image.

• The result of the cross-correlation is written only to element A (element G is

unused).

• Use 2D mode of the CLUT (details described later) to combine the energy

values from elements R and B.

Load the precomputed combination values into the CLUT so that the total

energy is output to element B.

• As in bilateral filtering (though the element roles differ), the Blender divides

the value in element A (correlation result) by the value in element B (total

energy), yielding the final normalized result.

6.4.1.7. Thinning

• Thinning is an iterative process in which center pixels are removed based on

the states of surrounding pixels. The process continues until no further

deletions are possible.

192

The Mask Filter is used to convert the surrounding pixel states into an index,

which is then used to look up whether or not the center pixel should be

deleted.

The following describes the behavior in conjunction with frComp.

• Only non-zero pixel values are eligible for deletion. These target pixels are

selected using FilterInColor and FilterInMask.

First, FilterInMask is used to extract the relevant bits to be referenced.

Then, FilterInColor defines the pixel value that qualifies for evaluation.

For example, to target pixels where element B equals 0xFF, set the following:

o FilterInColor = 0x000000FF

o FilterInMask = 0xFFFFFF00

The target condition (Hit) is determined using the expression:

Hit = ((ARGB & ~0xFFFFFF00) == (0x000000FF & ~0xFFFFFF00))

 The surrounding pixels in the 3×3 region around the center pixel are numbered

from the top-left to the bottom-right, excluding the center pixel itself.

As a result, pixel indices range from 0 to 7.

 Similar to the target pixel condition described above, the surrounding pixels are

evaluated using FilterOutColor and FilterOutMask.

For each surrounding pixel that matches the target value, the corresponding bit (by

index) is set to 1.

These bits are then packed into an 8-bit index, which is used to access the

FilterTable and retrieve a 1-bit evaluation result (Eval), as shown below:

Judge[i] = ((ARGB[i] & ~FilterOutMask) == (FilterOutColor & ~FilterOutMask)), where i

= 0–7

Eval = FilterTable[Judge]

• Based on the four possible combinations of Hit and Eval, the behavior for the

center pixel—whether to delete it or not—can be configured.

In this case, the center pixel is deleted only when both Hit = 1 and Eval = 1.

Deletion is performed by replacing the pixel value using FilterReplaceColor.

If FilterReplaceColor = 0, the pixel is rendered black in RGB representation.

• The configuration of the FilterTable should be based on standard thinning

algorithms (refer to relevant literature).

For example, to thin in a diagonal direction from the top-left to the bottom-

right, construct the table to satisfy specific deletion patterns.

(Note: This is just one of many possible implementations.)

193

Judge[0] & !Judge[2] & Judge[3] & !Judge[4] & Judge[5] & !Judge[7]

!Judge[1] & !Judge[2] & Judge[3] & !Judge[4] & Judge[5] & Judge[6]

!Judge[0] & !Judge[1] & !Judge[2] & Judge[5] & Judge[6] & Judge[7]

0x01110101_00510000_00000000_00500000_00000000_00000000_00000000_000

00000

• Additional deletion patterns should also be prepared for the following

directions: bottom-right to top-left, top-right to bottom-left, and bottom-left

to top-right.

These directional thinning passes are executed in sequence, forming a cycle.

When no further pixels are deleted in any pass, the thinning process is

considered complete.

• The FFD bit in the Info register is cleared to '0' at the start of frComp

execution.

If any pixels are deleted by the Mask Filter during processing, FFD is set to '1'.

Therefore, thinning is considered complete when the FFD bit remains at '0'.

• Alternatively, you can check Word 1 of the context for the thinning status.

If the value is 0xFFFFFFFF, it indicates that at least one pixel was deleted in

the previous cycle.

• Even if processing continues beyond the point where the termination condition

is met, the result will remain unchanged.

The accompanying figure shows an illustrative example in which the outermost

pixels are retained in red for explanatory purposes.

Figure 59 Thinning Process

• The figure below shows examples of thinning results using different methods.

In the first example, based on the initially described table, the process

converges in 16 iterations.

In contrast, the alternative table example converges in 10 iterations and also

produces fewer spurious branches (“hairs”).

194

Figure 60 Difference of Thinning Table

6.4.1.8. Scratch Correction

This section describes a simple method for performing scratch correction using

frComp, without requiring advanced processing. Pixels identified as scratches are

complemented using surrounding pixels via the Mask Filter. For example, as shown in

the figure below, scratch-like red lines can be removed.

Figure 61 Scratch Correction

• It is assumed that scratch detection has already been performed using

methods such as morphological operations or specific color extraction, which

are described later. The detection result should be embedded into the target

image by setting 0xFF to Element A as a marker for detected pixels. Configure

FilterInColor and FilterInMask so that processing is applied only when Element

A is 0xFF. Refer to the thinning example for further details.

• The Mask Filter should use the MaskB mode, and the Lookup Table (Blut)

should be configured with substitution pixel reference indices corresponding to

all possible 3x3 scratch patterns. For example, in the 3x3 grid shown below, if

the red regions represent scratches, excluding the center, the binary reference

index would be 01000001. This value is used as the address, and the

correction reference index 00010000 is set at Bit 4 of the corresponding Blut

entry. This configuration must be applied for all 256 possible patterns.

Figure 62 Pattern and Selection Map

Mentioned Table Another Table

Bit0 Bit1 Bit2

Bit3 Bit4

Bit5 Bit6 Bit7

7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0

195

• Since the reference index is expressed as a vector, multiple references can be

specified. When multiple references are used, the resulting pixel value is the

average obtained by dividing the sum of the referenced pixel values by the

number of references. As the number of references increases, the behavior

approaches that of a low-pass filter, resulting in a more blurred image. For

scratch correction, it is recommended to minimize the number of references to

preserve image sharpness.

• The FilterTable is used to configure exception handling. When all pixels in the

3×3 grid are either scratches or non-scratches, only reference indices 0 and

255 should be set to '1' so that the original image is referenced. Additionally,

set FilterCntl1.Op to '2' so that pixel replacement occurs only when the center

pixel is marked as a scratch and the evaluation value (used as an index to the

FilterTable) is '0'. The default replacement value FilterReplaceColor is not

used. The overall process is illustrated in the diagram below.

Figure 63 Replace Process

• If a scratch has a width of more than one pixel, multiple passes—similar to

thinning—are required. The termination condition is determined by checking

either the Info register's FFD flag or Word 1 of the context. However, since the

correction is only an approximation using neighboring pixels, the wider the

scratch, the more distortion will appear in the output image.

1

1 R

1

0 1 0 0 0 0 0 1

Op

S
e

l

Default Color

Table[]

Blut
Color

Hit

Color

Hit

Select

Color

Center Color

Target Color

Replace

Color

CriteriaReplace

Target

Position

196

6.4.1.9. Morphological Operations

• Dilation and erosion are performed using operators defined by coefficient

matrices of arbitrary sizes up to 5×5. The filter result is controlled using

thresholding via the Extractor (this can also be done using a 3D Clut).

• The operator coefficients must be evenly distributed such that their total does

not exceed 1.0 (0x100 in fixed-point representation). In dilation, the result is

activated (i.e., a dot is set) if any non-zero result is obtained. In erosion, the

result is activated only when the sum equals the total of the operator

coefficients (assuming pixel values are either 0 or 1.0).

Figure 64 Morphological Operation

• For kernels up to 3×3, different filter coefficients can be set per element,

allowing dilation and erosion to be performed simultaneously for each element

(coefficients are often the same). For example, when generating the difference

between Closing (dilation followed by erosion) and Opening (erosion followed

by dilation), you can first apply both dilation and erosion simultaneously to

Element GB and write the result to memory. Then, apply erosion and dilation in

the reverse order and compute the absolute difference using the Blender to

obtain the final result.

Figure 65 Dilation Result

00 10 00

10 10 10

00 10 00

30

Dilation:

if not 0 then 1

Erosion:

if not 50 then 0

Coefficient

(Operator)

Picture

197

6.4.1.10. Feature Point Extraction

• Multiple grayscale images are generated using Gaussian filters with different σ

values (image pyramid), and candidate feature points can be extracted by

detecting local maxima and minima using the Extrema Filter. The coordinates

of these candidate points are then written to memory via the Steal function,

enabling more precise analysis to identify true feature points.

• The Extrema Filter operates only within a single scale level of the image

pyramid. Four grayscale images (corresponding to four levels) must be packed

into one word, with Element B representing the lowest level and Element A the

highest. When constructing the image pyramid, Gaussian filters with different

σ values can be applied to each element, enabling simultaneous processing

for improved performance when possible.

• If the image pyramid includes more than four levels, the data must be split into

two sets. Levels 0 through 3 should be loaded via the SrcIn path, while levels 4

through 7 should be loaded via the SrcOut path.

Figure 66 Feature Points Extraction

SrcIn.B SrcIn.G SrcIn.R SrcIn.A SrcOut.B SrcOut.G

Extrema Filter

(X,Y)

Steal

Original

198

6.5. Clut Configuration

6.5.1. Effects of Transformation

• The primary purpose is to perform color space conversion. Depending on the

number of elements used, the Clut operates in 1D, 2D, 3D, or binary mode.

o In 1D mode, each element is converted individually.

o In 2D mode, a transformation is applied based on Elements R and B.

o In 3D mode, a transformation is applied using Elements R, G, and B to

output four elements.

o In binary mode, a boolean result is generated from Elements R, G, and

B.

• By selecting the appropriate mode according to the use case, Clut settings

can consolidate color space-related processing. Additionally, Clut can be

utilized not only for color space conversions but also for various types of

computation.

Figure 67 Clut Application

Gray

Clut
3D Mode

RGB ⇔ HSV
Saturation up

Clut
1D Mode

Metallic Gold

Alpha

Alpha

199

6.5.2. 3D Mode

• In this mode, new ARGB elements are generated from input elements RGB

(not limited to RGB; other color spaces such as YUV or HSV may also be

used). The corresponding Color Lookup Table comprehensively maps the

combination results. For example, a table can be defined to convert RGB to

HSV, manipulate a specific hue, and then convert back to RGB. This type of

transformation is not achievable using conventional element-wise Clut

processing.

• Since generating a full 2²⁴-entry table (8 bits × 3 elements) is impractical, the

inputs are uniformly sampled every 16 values per element. This reduces the

table size to 2¹² entries (4 bits × 3 elements). Each entry in the table stores a

24-bit RGB value.

• In frComp, final values are generated from coarsely sampled data using tri-

linear interpolation. This method enables highly accurate results for linear

transformations (e.g., RGB to YUV conversion with an error margin of

approximately 0.5 bits in the LSB). However, for nonlinear transformations,

interpolation errors may increase.

• The table index is capped at 240 due to the 16-level sampling per element.

Since index 256 does not exist, indices 241–255 cannot be directly

interpolated. These are approximated by extrapolating from existing values: the

value at index 240 is doubled, and the value at index 224 is subtracted to

obtain the estimated result. This extrapolation is performed using linear

interpolation.

• Table generation is carried out by incrementing each RGB element in steps of

16, and extracting the corresponding transformed value. The following is a

conceptual example in C language to generate an RGB to YUV conversion

table. The put() function represents the act of storing values in the table, and

clamping or rounding is not accounted for in this example.

for (r = 0; r < 16; r++)

 for (g = 0; g < 16; g++)

 for (b = 0; b < 16; b++) {

 y = (77 * r + 150 * g + 29 * b) / 16;

 u = (-43 * r - 85 * g + 128 * b) / 16;

 v = (128 * r - 107 * g - 21 * b) / 16;

 put(r, g, b, y, u, v);

200

• The table data is transferred from the start address specified in the Command

List to internal SRAM. In tri-linear transformation, eight index values are

referenced simultaneously, which requires a specialized addressing scheme

optimized for SRAM access. Assuming the unpack[] external array holds the

pre-packed one-dimensional table values, the following C code illustrates how

this is organized in the put() function:

/* separate bit location */

r0 = r & 1;

r1 = (r >> 1) & 1;

r2 = (r >> 2) & 1;

r3 = (r >> 3) & 1;

g0 = g & 1;

g1 = (g >> 1) & 1;

g2 = (g >> 2) & 1;

g3 = (g >> 3) & 1;

b0 = b & 1;

b1 = (b >> 1) & 1;

b2 = (b >> 2) & 1;

b3 = (b >> 3) & 1;

/* location and assignment */

ua = b0 | (g0 << 1) | (r0 << 2)

 | (b1 << 3) | (g1 << 4) | (r1 << 5)

 | (b2 << 6) | (g2 << 7) | (r2 << 8)

 | (b3 << 9) | (g3 << 10) | (r3 << 11);

value = (a << 24) | (y << 16) | (u << 8) | v;

unpack[ua] = value;

• The 32-bit data is ultimately stored in memory as-is. If Element A is not used,

the upper 8 bits may contain unknown values; however, ClutCntl.En[3] must be

set to '0'. The same rule applies in 2D mode.

• To improve precision, a simplified floating-point configuration is supported

(from Ver.C onward). In the table entry for each element, the LSB 3 bits of

Element A specify the fractional bit position for the RGB elements. For

example, if Element A is set to 2, the fractional point for the RGB elements is

placed between LSB2 and LSB3. This configuration is effective when defining

tables with limited dynamic range.

201

6.5.3. 2D Mode

• This mode uses only Elements R and B. Because the upper 6 bits are used for

indexing and the lower 2 bits are applied for bi-linear interpolation, this mode

offers higher precision than 3D mode. As described in the section on the

Canny filter, this mode is suitable for applying arbitrary (linear or non-linear)

transformations based on two elements.

• While 3D mode uses all input elements, 2D mode discards Element G. Element

A remains unchanged.

/* separate bit location */

r0 = r & 1;

r1 = (r >> 1) & 1;

r2 = (r >> 2) & 1;

r3 = (r >> 3) & 1;

r4 = (r >> 4) & 1;

r5 = (r >> 5) & 1;

b0 = b & 1;

b1 = (b >> 1) & 1;

b2 = (b >> 2) & 1;

b3 = (b >> 3) & 1;

b4 = (b >> 4) & 1;

b5 = (b >> 5) & 1;

/* location and assignment */

ua = b0 | (r0 << 1)

 | (b1 << 2) | (r1 << 3)

 | (b2 << 4) | (r2 << 5)

202

 | (b3 << 6) | (r3 << 7)

 | (b3 << 8) | (r4 << 9)

 | (b3 << 10) | (r5 << 11);

value = f(r, b);

unpack[ua] = value;

6.5.4. 1D Mode

• In this mode, each of the ARGB elements is indexed individually. Unlike 2D/3D

transformations, Element A is also subject to transformation. The table values

range from 0x101 (−255/256), 0x102 (−254/256), ..., to 0x0 (0.0), 0x1

(1/256), ..., 0xFF (255/256), and up to 0x100 (1.0). Index values span from 0 to

0x1FF, with 0x100 corresponding to a value of 0.0.

• The memory layout differs from 2D/3D modes. Each element's table consists

of 512 entries, each occupying one 32-bit word. Only the lower 9 bits of each

32-bit entry are used. The table starts with Element B, indexed from 0x00

upward. Positive indices from 0x00 to 0x100 are followed by negative indices

from 0x101 onward (totaling 512 entries). The same arrangement applies

sequentially to Elements G, R, and A.

• 1D mode allows two entries to be defined simultaneously. After the first set of

values, a second set can be stored consecutively. The second entry is

selected when both the preceding filter flag and ClutCntl.Sel are set to '1'.

6.5.5. Input Value Range

• Filter operations may produce negative values. These are expressed using the

most significant bit of a 9-bit word. However, the 3D Clut only accepts 8-bit

inputs. In such cases, set the corresponding bit in MasterCntl.Inword to '1' for

the affected element to convert the value range to a minimum of 0 and a

maximum of 0xFF. If this is not done and a negative value is input, it will be

treated as '0' by default.

203

• If it is known that the input will never be negative and only the value 1.0

(0x100) is used, setting MasterCntl.Inword is unnecessary. The value 1.0 is

automatically mapped to 0xFF.

• Tables can support pseudo-floating-point representation (Ver.C). By

sacrificing the LSB 3 bits of Element A, a common decimal point position for

the RGB elements can be specified (positive direction only). This setting can

be applied per table. This method increases the dynamic range for small

values, enabling more precise results.

6.5.6. Specific Color Extraction

• This section describes a method for extracting specific colors using 3D mode.

Here, skin tone extraction is used as an example. Extraction is typically

performed in the HSV color space, where hue selection is possible. Hue is

represented from 0° to 360°, with skin tones generally falling around 0° to

30°. Saturation and brightness vary depending on lighting conditions. For

simplicity, the saturation threshold is set to 1/4 (normalized) to exclude dark

regions, while brightness is used as-is.

Figure 68 Color Space Hue

• In the lookup table, entries corresponding to skin tones are marked as true

with a value of 1.0, while all others are set to 0.0. Since the table must be

represented in RGB format, each RGB component (8-bit) is varied in steps of

16 to generate the table. This results in a total of 4,096 samples.

• Each RGB sample is then converted to HSV format, and samples where H >

30° or S < 0.25 are excluded. The remaining valid samples are considered to

204

represent skin tones, and their corresponding RGB entries in the table are all

set to 0xFF.

• The diagram below is shown in a 64×64 format for illustrative purposes;

however, the actual table is a 3-dimensional grid of size 16×16×16.

Figure 69 RGB Incremental and Converted Table

• The generated table, composed of 24-bit RGB values, is packed into 32-bit

words and stored in memory. The frComp engine is then started to load the

table into the 3D Clut. After skin tone extraction, the RGB components of the

corresponding pixels are set to 0xFF.

• To make the result easier to interpret, the extracted pixel values are multiplied

by the original input pixel values. Specifically, the SrcOrg path applies the 3D

Clut transformation (used as α), while the SrcMod path bypasses the Clut

and provides the original pixel value. The multiplication of these two yields a

result where only skin tone regions remain visible, and non-skin areas appear

black.

• As shown in the figure, non-skin regions are rendered black, while the

Figure 70 Detect Skin Color

205

6.5.7. Coordinate Transformation

• When performing coordinate transformation using the SrcOut path, set

MasterCntl.ReplaceEn to '0'. This causes the coordinate values X and Y to be

assigned to Elements AR and GB, respectively. If Elements A and G are both

'0', then Elements R and B contain sufficient information, and a standard 2D

mode transformation can be applied directly.

• If Elements A and G are not '0', use DstMapInfo.Prec to right-shift the

coordinate values and fold the necessary information into Elements R and B. If

coordinates can be negative, the lookup table must be prepared in advance to

handle negative values appropriately.

6.6. Extractor Configuration

6.6.1. Binarization

• Binarization is performed by defining three regions using two threshold values:

Low and High. Specific processing can be assigned to each of these regions.

The following is an example of the region definitions based on thresholds Low

and High.

o Regions I to III represent the values to be assigned as pixel values in

each range.

o A dash (-) indicates that the input pixel value is passed through

unchanged.

Type
Low

High
Ⅰ Ⅱ Ⅲ Result

Original
0

0
0 0 0

206

Simple

Binarizatio

n

0

0ｘ80
0 0 0xff

Simple

Binarizatio

n

(Inverted)

0

0ｘ80
0xff 0xff 0

Partial

Binarizatio

n

(Maximize

in Range)

0x40

0xc0
0xff - 0xff

Partial

Binarizatio

n

(Minimize

in Range)

0x40

0xc0
0 - 0

Adaptive

Binarizatio

nThreshol

d = Mean

+8

8

0xff
0 0xff Don't care

Threshold

= Mean

0

0xff
0 0xff Don't care

207

Threshold

=Mean -8

0

8
Don't care 0 0xff

The sample image size is 128×128. Adaptive binarization uses a 5×5 mean

filter.

• Adaptive binarization utilizes data from both the SrcOrg and SrcMod paths. A

5×5 mean filter, Gaussian filter, or median filter is applied to one of the inputs

to determine the threshold value. The other threshold is set to either 0x00 or

0xFF. Finally, binarization is performed by comparing the threshold with the

data from the SrcOrg path.

• In adaptive binarization, a constant offset may be added to or subtracted from

the threshold value. For addition, set the offset value to PixelKeyHigh; for

subtraction, set it to PixelKeyLow.

o In the addition case, only Regions I and II are referenced, so

PixelKeyLow should be set to 0.

o In the subtraction case, only Regions II and III are referenced, so

PixelKeyHigh should be set to 0xFFFFFFFF.

• Binarization can also be applied to color images. In this case, each element is

evaluated individually. Alternatively, binarization can be determined using a

shared evaluation value. For example, each of the ARGB elements can be

binarized independently, or the binarization result of Element A can be applied

to Elements R, G, and B.

• When using a wide-area average filter (larger than 5×5), the filtering should

first be performed using frComp, with the result written to memory. Then, use

Envelope to insert the filtered result from the SrcOut path into Element A, and

apply it as the threshold for binarization.

For handling wide-area filters that may result in pixel values exceeding 8 bits,

refer to the section on processing pixel values beyond 8 bits.

208

6.7. Blender Configuration

6.7.1. Alpha Blending Configuration

• The alpha (α) value can be selected from any element or from a fixed

constant value specified by PixelConst. For example, to blend a generated

image into a destination image using a fixed alpha value, configure the fields in

PixelCntl as shown below. The α value should be set in PixelConst.C0. This

configuration is applied uniformly to the RGB elements (Element A can be set

arbitrarily).

Field Value Description

DstCmp 0 No inversion of the destination alpha value

DstInv 0 No reciprocal of the destination value

DstOne 0 Do not use fixed 1.0 input for destination

DstASel 0 Use post-filtered value for destination

DstBSel 4
Use fixed value from PixelConst.C0 as

destination alpha

SrcCmp 0
No re-inversion of the source alpha (default

inversion is applied)

SrcInv 0 No reciprocal of the source value

SrcOne 0 Do not use fixed 1.0 input for source

SrcASel 0

Not referenced; can be set to Unknown (since

Blend = 1)

SrcBSel 4

Use fixed value from PixelConst.C0 as source

alpha (other constants also allowed); with

SrcCmp = 0, this is automatically inverted to

1 − α

OpCarry 0 Treat as 8-bit pixel values

OpLut 0 Do not reference lookup table for blend result

OpALU 0
Use clamped addition (values below 0 become

0; values above 0xFF are saturated to 0xFF)

KeyHighSel

KeyLowSel
0 Operation settings for Extractor

Max 0/1
Whether to treat pixel value 0xFF as 1.0

(optional)

Cross 0
Do not swap source and destination in

calculation

Blend 1 Enable blending operation

209

En 1 Enable write-out

• By configuring the blend source (DstIn* settings) and blend destination

(DstOut* settings) identically, the source image can be overlaid directly onto

the destination image. Conversely, if different settings are used, alpha blending

can be applied between the source and destination images to generate a new

destination image. In the former case, DstInInfo, DstInBase, DstOutInfo, and

DstOutBase must be the same, but this is not required in the latter.

• The alpha value (α) does not have to be fixed; it can be assigned from a

varying element, or different alpha values can be used for the source and

destination images, depending on requirements.

• Normally, the source image is selected from either the SrcIn or SrcOut path,

but both can be routed to the A and B paths inside the Blender. This allows

for advanced operations, such as blending an original image and an abstract

image using threshold-controlled alpha values.

6.7.2. Handling Pixel Values Beyond 8 Bits

• The Blender's ALU supports 16-, 24-, or 32-bit operations by concatenating

adjacent elements during addition or subtraction. Concatenation is enabled via

the PixelCntl.OpCarry setting. When set to '1', the carry from the lower

element is included in the computation. Elements are ordered as ARGB from

high to low. For example, if only PixelCntlG.OpCarry is '1', Element G's

computation incorporates the carry from Element B, effectively forming a 16-

bit value with G as the upper 8 bits and B as the lower 8 bits.

• Source pixels are typically 9-bit signed values and cannot be directly used for

16/24/32-bit operations. To handle this, the upper elements are set to zero.

For example, to extend Element B, set Elements A, R, and G to zero (via

PixelCntlA, R, G settings), allowing the ALU to receive the 9-bit value

extended to 32 bits with proper sign extension.

• Destination pixels are fed directly into the ALU, so their format must match

the intended bit length for the operation. As with source handling, element

extension is allowed. When using results iteratively, they should be saved in

the same bit length as the operation.

• PixelCntlG.OpALU enables addition/subtraction without clamping. Clamping

would zero out negative results per element. Without clamping, results are

expressed in 2's complement across 16/24/32 bits. The result is written to

memory using the desired bit length specified in DstOutInfo.Format. Even if

210

PixelCntl.Max is set to '1' to allow per-element representation of 1.0, no issues

arise.

• When applying filters larger than 5×5, processing is split and accumulated

across multiple passes. Since 8-bit memory cannot store negative values,

computations must use at least 16-bit operations. In such cases, only two

elements can be processed simultaneously (not all four). The process for

handling single-element accumulation is as follows:

o Reading Accumulated Data:

Set DstInInfo.Format = 1, DstInInfo.Exp = 3, and DstInInfo.Rdc = 0 to

load the data as 16 Bpp. For the first accumulation pass, do not

reference the destination pixel.

o Writing Accumulated Data:

Set DstOutInfo.Format = 1, DstOutInfo.Exp = 3, and DstOutInfo.Rdc = 0

to write data as 16 Bpp.

o Converting Accumulated Result to 8 Bpp:

For the final write, change DstOutInfo.Format = 0 to output as 8 Bpp.

Set DstInInfo.Exp = 2 to clamp negative values to zero, and use

DstInInfo.Rdc to adjust gain. This is useful when the accumulated result

is expected to exceed 1.0.

Figure 71 Accumulated 16bit Resulｔ

• For example, when performing 45×45 pattern matching, a 5×5 2D filter is

applied 9×9 times, with the coefficients adjusted appropriately for each

iteration. The accumulated results include both the filtered output using

arbitrary coefficients and the averaged output, calculated simultaneously.

These are stored as 16-bit values each, for a total of 32 bits.

• Finally, using the known energy of the reference pattern and the per-pixel

results (from both the weighted and averaged outputs), normalization is

performed via a 3D Clut. As shown in the diagram below, a normalized image is

generated, with matched regions separately color-coded.

G BA R

++++

16bit16bit

OpCarryGOpCarryA

Source G
set 0

Source BSource A
set 0

Source R

211

Figure 72 Pattern Matching Result (45x45 Normalized Cross-correlation)

