

Revision 2.0

28 April 2025

English edition

Copyright 2021 ArchiTek All Rights Reserved

Confidential and Proprietary

pss Specification
Pipeline Slice Scheduler

1

1. Overview

1.1. Introduction

1.2. Key Parameters

1.3. Implementation Parameters

2. Signal Lines

2.1. Control Bus Interface

2.2. Memory Interface

2.3. Pipeline Input Interface

2.4. Pipeline Output Interface

2.5. Utility

3. Configuration and Operation Description

3.1. Configuration Overview

3.2. Structure of Logical Channels

3.3. Arbitration of Logical Channels

3.4. Pipeline Control

3.5. Connection with Pipeline

3.6. Link Control (Source/Destination)

3.7. Link Control (Group)

3.8. Index Mask

3.9. Restore Function

3.10. Command List

3.11. Clearing and Continuing Index

3.12. Activation and Termination

3.13. Termination Conditions and Interrupts

3.14. Interrupt-Driven Execution

3.15. Priority Control

4. Register Descriptions

4.1. Overview

4.2. Definition (Command)

4.3. Definition (General)

4.5. Details (Command)

4.5.1.1. Cntl[n] Register

4.5.1.2. Rep[n] Register

4.5.1.3. Pipe[n] Register

4.5.1.4. Mask[n] Register

4.5.1.5. Link0,1[n] Register

2

4.5.1.6. Width0, 1[n] Register

4.5.1.7. Tmp0, 1[n] Register

4.5.1.8. Cur0, 1[n] Register

4.6. Details (General)

4.6.1.1. Reset Register

4.6.1.2. Clock Register

4.6.1.3. Info Register

4.6.1.4. Int Register

4.6.1.5. Timer Register

4.6.1.6. Grp Register

4.6.1.7. ClearVec[n] Register

4.6.1.8. PauseVec[n] Register

4.6.1.9. ActVec[n] Register

4.6.1.10. StatVec[n] Register

4.6.1.11. DoneVec[n] Register

4.6.1.12. IntVec[n] Register

4.6.1.13. IntDisVec[n] Register

4.6.1.14. IntInOnVec[n] Register

4.6.1.15. IntInChVec[n] Register

4.6.1.16. PC[n] Register

4.6.1.17. PD[n] Register

4.6.1.18. PI[n] Register

3

1. Overview

1.1. Introduction

⚫ The Pipeline Slice Scheduler (hereafter referred to as pss) is an embedded core that centrally

controls multiple functional Pipelines. The Pipelines themselves are prepared by the user.

⚫ Up to 256 logical channels (software interfaces) can be defined, which operate by time-

division fragmentation to drive up to 16 physical channels (Pipelines). These numbers can be

adjusted via implementation parameters.

⚫ Arbitration of logical channels is performed to optimize the operation of physical channels. It

can be controlled in such a way that up to 256 Pipelines appear to exist.

⚫ Logical channel operation can be controlled by a simple statement such as DMA configuration.

You can choose a dedicated register or an external memory such as main memory and set it

up. In the case of external memory, pss automatically accesses it as needed.

⚫ Logical channels can be linked by specifying a forward/backward relationship between them.

By specifying the pre- and post-relationships, it is possible to control the order in which the

logical channels are activated, etc. Many-to-one, one-to-many, and many-to-many

relationships can be constructed.

⚫ Index, an execution Index, can be expressed in up to four dimensions. This makes it possible

to exchange data on a per-line basis, per-frame basis, and in different ratios.

⚫ Logic channels are evaluated and executed sequentially, not simultaneously. Since the

number of circuits operating simultaneously is limited, low cost and low power consumption

are maintained even if the number of logic channels is increased.

Note:

• Pipelines require a specific interface that conforms to connection rules.

• The memory interface must be customized for each system.

• The number of logical and physical channels can be customized within a certain range.

1.2. Main Parameters

4

⚫ Memory Bus - Logical Description Read: 64bit x 1

⚫ throughput - Max. 0.5 schedule/cycle

⚫ clock - Undefined (depends on implementation process)

1.3. Implementation Parameters

Parameter Name Description Default Value

CNR • Radix of channel number 8（8or below)

PNR • Radix of Pipeline number 4（4or below)

BLR
• Radix of burst length

• Set burst unit for 64-bit memory access
2（4or below）

2. Signal Lines

2.1. Control Bus Interface

Signal Name IO Pol Source Description

cntlReq I + clk
• Request signal

• Evaluate cntlGnt

cntlGnt O + clk • Grant signal

cntlRxw I + clk

• R/W signal

• Evaluate cntlReq & cntlGnt

0: Write

1: Read

cntlAddr[31:0] I + clk
• Address signal

• Evaluate cntlReq & cntlGnt

cntlWrAck O + clk • Writ acknowledge signal

cntlWrData[31:0] I + clk
• Write data signal

• Evaluate cntlWrAck

cntlRdAck O + clk • Read acknowledge signal

cntlRdData[31:0] O + clk
• Read data signal

• Sync cntlRdAck

cntlIrq O + clk
• Interrupt signal

• Level hold type

5

2.2. Memory Interface

Signal Name IO Pol Source Description

memReq O + clk • Request signal

memGnt I + clk • Grant signal

memAddr[31:0] O + clk • Address signal

memStrb I + clk • Read strobe signal

memAck I + clk • Read acknowledge signal

memFlush I + clk • Read flush signal

memData[63:0] I + clk • Read data signal

2.3. Pipeline Input Interface

Signal Name IO Pol Source Description

pinVld O + clk • Valid signal

pinStall I + clk • Stall signal

pinRest O + clk
• Restore signal

• Indicates invalid frame and use previous frame

pinCID[CNR-1:0] O + clk
• ID signall

• Indicates the handling ID

pinEnd[3:0] O + clk
• End signal

• Indicates last fragment of each Index

pinAddr[31:0] O + clk
• Address signal

• Indicates an address of Pipeline contexts

pinDelta[15:0] O + clk
• Delta signal

• Indicates a length of Pipeline processing

pinIndex[64:0] O + clk

• Index signal

• Indicates the start of Indexes {C, W[15:0],

Z[15:0], Y[15:0], X[15:0]}

pinOk I + clk
• OK signal

• Indicates buffer being able to push

Signal name subscript n is Pipeline number from 0 to 2PNR-1

6

2.4. Pipeline Output Interface

Signal Name IO Pol Source Description

ponVld I + clk • Valid signal

ponStall O + clk • Stall signal

Signal name subscript n is Pipeline number from 0 to 2PNR-1

2.5. Utility

Signal Name IO Pol Source Description

intVld[2CNR-1:0] I + clk
• Interrupt valid to activate logical channel [n]

• Do not assert if parameter are not set

intStall[2CNR-1:0] O + clk
• Interrupt stall to activate logical channel [n]

• Indicates the logical channel is busy

intOp[2CNR-1:0] I + clk • Side signals of intSet inform restoring the Index

intClr[2CNR-1:0] I + clk
• Interrupt set to inactivate logical channel [n]

• Do not assert if parameter is not set

fpReq[2PNR-1:0] I + clk
• 1 clock early request against the pinVld signal

• Use to generate gate signal (for Pipeline)

ppReq[2PNR-1:0] O + clk
• 1 clock early request against the ponVld signal

• Use to generate gate signal (for Pipeline)

gate[2PNR+12:0] O + clk
• Gated clock control signal signifying condition of

each internal block

gclk[2PNR+12:0] I + clk • Gated clock

reset I + clk • Synchronous reset

clk I + clk • Clock

reset_n I - clk • Asynchronous reset

3. Architecture and Operation Description

3.1. Architecture Overview

➢ The PSS, as shown in Figure 1, consists of the following components: a control unit that

7

manages the input and output of logical channel states and parameters; an arbitration unit

that selects an appropriate one from the 2CNR logical channels; each calculation unit that

determines whether or not to execute 2PNR Pipelines according to logical channel

parameters, each FIFO sections that queues the execution parameters of the Pipeline, and

SRAM that stores the parameters.

Figure 1 pss Block Diagram

➢ The process up to Pipeline activation involves selecting a logical channel (indicated by the

red line) and issuing commands to each Pipeline.

➢ The completion signals from each Pipeline are returned to the PSS as shown by the blue

dotted lines. This triggers an update of the information necessary to activate the next Pipeline.

➢ The PSS essentially functions like a pump, driving the Pipelines, which can be thought of as

individual organs.

3.2. Operational Overview

➢ The PSS drives the Pipelines based on the configuration of logical channels. Each logical

channel corresponds to one Pipeline. It is acceptable for multiple logical channels to specify

the same Pipeline.

➢ The logical channels referenced by the PSS consist of a transfer size (Width) and an Index

indicating the progress, similar to Direct Memory Access (DMA). The transfer size is provided

by the user, while the Index is generated by the PSS. Note that the Width should be set to

the transfer size minus one.

SRAM

Calculation

Arbitration

Control

FIFO15

FIFO2

FIFO1

FIFO0

Memory

Register Access

User Pipeline

8

➢ The fragment size (Delta), which determines the counting unit of the Index, is also specified

by the user. It is acceptable to configure values that result in remainders or exceed the Width.

For example, if Width is 10 and Delta is 4, the Index changes as 0, 4, 8, 10 (10 wraps around

and effectively becomes 0). If Width is 10 and Delta is 16, the Index changes as 0, 10. Note

that Delta should be set to the fragment size minus one.

➢ The Index is 4+1 dimensional and increments in order from the lowest to highest dimension:

X, Y, Z, W, and C. Transfer sizes are configured for four dimensions. For example, using the

dimension symbols as subscripts, if WidthX, Y, Z, and W are set to 4, 3, 2, and 1 respectively,

then IndexX resets to 0 just before reaching 4, and IndexY is incremented. The other Indexes

similarly carry over in order. However, IndexC is derived from the carry-over of IndexW and

does not have a transfer size setting. Additionally, when a carry occurs, the value is inverted.

Figure 2 Index Count of each Logical Channel

➢ Each Index, except for IndexC, can count up to 16 bits. When combined, the Indexes can

represent a count of up to 64 bits. If a transfer size is set to '0', that dimension is omitted.

For example, if only WidthX is non-zero, the transfer is treated as one-dimensional. These

Indexes are automatically reset to '0' at the initial activation of the logical channel.

➢ IndexC is 2 bits wide and is used to manage double buffering of frame processing, where a

frame is defined by IndexX through IndexW. It is not necessarily reset to '0' at the initial

Delta

Widthx

To User Pipeline

Widthy

Widthz

Widthw

Indexx

Indexy

Indexz

Indexw

+1

Cmp

Carry

Cmp

Carry

+1 Cmp

Carry

+1 Cmp

Carry

IndexC
Not

User Setting

Logical Channel #n of 256

Pipeline
#m of 16

Select

9

activation of a logical channel. However, it can be optionally cleared during the automatic

loading of parameters, which will be described later.

Figure 3 Index Count Flowchart

➢ Each logical channel must be activated to become effective. Activation can be performed in

one of three ways: by register configuration, by external interrupt, or by automatic parameter

loading. Details of each method will be described in the register descriptions.

➢ It is also possible to inactivate a logical channel. This can only be done through register

configuration. The values of parameters such as the Index are preserved, allowing the channel

to be resumed later.

3.3. Arbitration of Logical Channels

➢ pss performs arbitration to select one of the 2CNR logical channels. This arbitration occurs in

two stages to ensure that execution timing across Pipelines remains balanced. Arbitration

tmpX = IndexX + Delta

tmpX < WidthX

IndexX = 0

IndexY = 0

IndexZ = 0

IndexW = 0

IndexX = 0

IndexY = IndexY + 1
IndexX = tempX

IndexY < WidthY

IndexY = 0

IndexZ = IndexZ + 1

IndexZ < WidthZ

IndexZ = 0

IndexW = IndexW + 1

IndexW < WidthW

IndexW = 0

IndexC = IndexC + 1

Yes

Yes

Yes

Yes

No

No

No

No

Start

End

Transmit

Index, tmpX - WidthX

Transmit

Index, Delta

10

takes two cycles, which defines the maximum driving capacity of pss (i.e., in a system with

256 logical channels, each DMA can be scheduled approximately once every 512 cycles).

➢ First Arbitration Stage

Among the activated logical channels (CID: 0 to 2CNR − 1), those with matching Pipeline ID

(PID: 0 to 2PNR − 1) are selected as candidates. And finaly a round-robin selection is

performed from the candidates. A pointer is incremented. Logical channels without a PID

assignment are skipped.

➢ Second Arbitration Stage

In the next arbitration, the CID selected above is determined in a round robin prepared for

each PID. The selection is made by choosing the CID closest to the pointer in ascending

order. The pointer is automatically incremented. However, it is possible to disable this

increment for each Pipeline. If not incremented, the logical channel will always be executed

as long as the corresponding logical channel is Active. This behavior is useful when a Pipeline

should not share resources, such as a display controller.

Figure 4 Arbitration of Logical Channel

➢ Using this arbitration method, it is possible to assign and drive one valid logical channel per

each of the 2PNR Pipelines. It takes 2PNR × 2 cycles to complete one round of Pipeline numbers,

but as long as the fragment size is sufficiently long, the Pipelines can be driven continuously

without interruption.

➢ Through priority control, it is possible to prioritize the same CID that was previously executed

on the same Pipeline. This allows for intentional execution of consecutive operations on the

same Pipeline.

Delta

Cycle2Cycle Arbitration

Seamless Start

Pipeline #0
Pipeline #1
Pipeline #2
Pipeline #3
Pipeline #4

Pipeline #2PNR-1

11

Figure 4 Seamless Pipeline Start

3.4. Pipeline Control

➢ The PSS handles the Index, while the Pipeline operates on the actual entity pointed to by

the Index. For example, the entity could be data stored in main memory or other memory, and

the Index serves as a pointer to it.

Figure 5 Example of Pipeline Processing

➢ Pipeline is driven by fragment volume units. Accordingly, the Pipeline is required to process

the amount of fragments from the incoming Index. It is not necessary to refer to the Index

and the amount of fragments. If it is not inconvenient, some Indexes can be ignored.

➢ Since the Pipeline performs fragment-based processing, context switching is necessary. The

PSS sends the context information (Addr) together with the Index, which the Pipeline can

utilize. Whether the Addr is used directly as context or as an address to fetch the context

from memory is up to the implementation. Note that if the fragment size is small and context

switching occurs frequently, and if there is significant Pipeline hazard (such as locking inputs

Logical Channel #0

Logical Channel #1

Logical Channel #2

Logical Channel #3

Logical Channel #4

Logical Channel #5

Logical Channel #6

C
ID

 A
rb

ite
r

P
ID

 F
ilte

r

Round-robin

Pointer [0-15]

Activate

Activate

Activate

Activate

Selected

Logical

Channel

Logical Channel #2CNR-1Activate

Round-robin

Pointer [0-15]

Pipelinepss
start:

Index

Delta

Addr

finish

Memory

Context
Data

Delta

12

until processing completes), it can negatively impact performance.

➢ Completion notification to the PSS is mandatory, as it has a one-to-one relationship with

Pipeline execution. Upon receiving the completion notification, the PSS updates the Index.

As will be described later, link control requires that the referenced Index has already been

processed. Therefore, the completion notification must be sent at the timing when the final

data has been written to memory.

➢ Since PSS arbitration precedes Pipeline execution, drive commands are internally buffered

for several stages. Buffering is necessary for performance, it also means the Pipeline may

receive consecutive activations up to the maximum buffering capacity. If you need to

suppress new activations during Pipeline execution, you can negate the piOk signal, which

directly controls arbitration. During this period, no arbitration will be performed for that

Pipeline, and drive commands will not be buffered.

3.5. Connection to Pipeline

➢ The connection between the PSS and each individual Pipeline can be physically connected

or disconnected. For example, when resetting a Pipeline during operation, the Pipeline can be

temporarily disconnected, and the states of the logical channels associated with that Pipeline

in the PSS can be cleared.

➢ Changing the connection state during operation affects the logical channels associated with

the corresponding physical channel, as well as the logical channels linked to them.

➢ The following connection modes are available: “Ground” results in a forced termination,

“Short” causes a termination (with already issued commands temporarily suspended), and

“Open” results in a temporary suspension.

Figure 6 Link between pss and Pipeline

pssPipelinepss Pipelinepss Pipeline

Connect Short Open

Pipelinepss

Ground

13

3.6. Link Control (Source/Destination)

➢ After arbitration, the Index of the selected logical channel is checked against the Indexes of

other logical channels. Only those channels that have been designated for linking in their

configuration are subject to this check.

➢ The check is similar to FIFO pointer management. When the data processed by a Pipeline is

divided into input (Source) and output (Destination), the relationship appears as shown in

Figure 8. In this case, Logical Channel A drives Pipeline X and generates data used by Logical

Channel B. Logical Channel B, in turn, drives Pipeline Y and uses the data produced by Logical

Channel A.

Figure 7 Link Control using Index as FIFO

➢ Two Indexes are managed to serve as pointers. One is updated immediately after being sent

to the Pipeline (Tmp), and the other is updated after the Pipeline sends a completion

notification (Cur). Tmp and Cur hold the same value but differ in update timing. By referencing

Tmp for its own Index and Cur for the other party's Index, safe overtake control is ensured.

➢ Each logical channel can be configured with up to two links. These are generally divided into

Source-side and Destination-side links (it is also possible to have two Source or two

Destination links). Source-side links are used when the Pipeline should be driven only if the

linked counterpart has data ready. Destination-side links are used when the Pipeline should

not be driven if the linked counterpart is still processing data.

Memory as FIFO

Index as virtual
input pointer

Process
stop

Data

Logical
Channel

A

Pipeline
X

Logical
Channel

B

Pipeline
Y

Full

Index as virtual
output pointer

not

Empty Process
ok

Data

Delta
Process

start

Delta
Process

start

14

Figure 8 Source and Destination Link

➢ You can select any one dimension of the Index to reference. This selection allows the linking

unit to be extended from one to four dimensions. For example, in the case of images, Pipeline

execution can be controlled at the level of a two-dimensional framebuffer. In general, to

manage FIFO-like pointer control, the transfer sizes of the referenced dimensions must

match between the linked logical channels. There are no strict constraints on fragment size,

but for efficiency, they are usually set the same.

➢ Settings for dimensions other than the referenced one are flexible. Typically, they are set the

same, but different values can be used for operations such as rate conversion. For example,

when converting audio from 44.1kHz to 48kHz (with the conversion handled by the Pipeline),

you can set WidthX to 441 for the source and 480 for the destination, with the same WidthY.

This maintains consistency in the 480/441 data rate control.

➢ An offset can be applied in Index comparison. The offset introduces a delay in the link control

for the referenced dimension. For source links, Pipeline execution waits until at least

(fragment size + offset) worth of data is available. For destination links, Pipeline execution

waits until at least (fragment size + offset) worth of space is available.

➢ The permission to drive the Pipeline for each source/destination link (srcOk / dstOk) is

determined using the specified dimension and the following formulas: Here, srcCur / dstCur

is the Index of the linked partner, carry is 1 if there's a dimensional overflow (wrap-around),

srcTmp / dstTmp is the channel's own Index, delta is the fragment size, offset is the offset

mentioned above, and width is either the transfer size or buffer size.

➢ You may freely choose whether width represents transfer size or buffer size. The buffer size

must be specified as a power of 2 (2ⁿ), where n is between 1 and 7. If n = 0, the transfer size

is used. If the transfer size is 0, the buffer size is treated as 1.

Logical
Channel
(noted)

Logical
Channel
(source)

Logical
Channel

(destination)

Data sufficient? Space available?

Source link Destination link

15

➢ If the transfer size of the referenced link is 0, IndexC is used as the reference. In this case,

the buffer size（2n） can only be selected as n = 0 or n = 1, and the offset is not applied. n =

0 corresponds to a FIFO of depth 1, and n = 1 corresponds to a FIFO of depth 2.

➢ If there is a carry (cycle difference), the offset is ignored. This is because once the referenced

Index crosses a boundary (e.g., at the edge of an image), the condition including the offset

may no longer be valid. However, for control methods like data rate regulation that still require

the offset even across Index boundaries, a mode that always considers the offset is also

available.

➢ For each Source and Destination link, the Index of the referring (linked) channel can be added

as a condition. In addition to the completion-based condition, an issuance-based condition

can also be applied, enabling processing to wait for the issuance of other channels. This is

effective when you want to prioritize another channel. However, if the channels are not

assigned to the same Pipeline, in-order execution is not guaranteed, and the other channel

may not necessarily be executed first.

➢ It is possible to control link behavior unconditionally—either blocking or freeing it—based on

control flags from the referenced (linked) channel rather than from the channel itself. When

executing multiple commands consecutively on the same channel, you can choose which

command should be associated with link control involving other channels. In Figure 10, for

example, Link Command 3 of Logical Channel A is blocked by Link Commands ① and ② of

Logical Channel B, preventing it from executing. Meanwhile, Link Commands ① and ③ of

Logical Channel B are freed from the influence of Command 2 of Logical Channel A. Note

that a command with no link control settings behaves as if it is free-controlling itself.

16

Figure 9 Link Block and Free Control

3.7. Link Control (Group)

➢ In addition to one-to-one link control, many-to-many link control may be required in some

cases. For example, when multiple Pipelines perform overlapping writes to a single memory

region. Many-to-one can be handled by having multiple logical channels establish

Source/Destination links to a single logical channel. On the other hand, one-to-many cannot

be directly controlled, as only two links can be configured per logical channel.

➢ To address this, a cascade link configuration, as shown in Figure 11, is used. When channels

are connected in a cascade, no overtaking occurs between the preceding and following logical

channels, and the Index difference remains within the transfer size or buffer size. Therefore,

by preparing buffers equivalent to the number of chained links, the configuration appears as

one-to-many from the entrance of the chain, and many-to-one from the exit.

Figure 10 Cascade Link

Command series of channel B [⓪-③]

Command series of channel A [0-3]

0 1 2

0 1 3

+src link

⓪ ① ②

⓪ ②

+block

③
+dst link

2

+free

①
+src link

+block ③

3

s
rc

 l
in

k

s
rc

 l
in

k

d
s
 t
lin

k

free

blockblock

Logical
Channel A

Logical
Channel B

Pipeline

Pipeline

Logical
Channel C

Pipeline

Logical
Channel D

Pipeline

Src Link

Src Link

Src Link

Dst Link

Dst Link

Dst Link

Buffer

Many to One

One to Many

Behaving as
linked chain

Src
Link

Dst
Link

Chain Group

17

➢ Multiple required buffers can be consolidated into a single buffer. To ensure that the Index

of the first logical channel does not advance beyond the Index of the last logical channel plus

the transfer size or buffer size, all Destination links should be configured to reference the

last logical channel, as shown in Figure 12.

Figure 11 Cascade Link for Minimal Buffer

3.8. Index Mask

➢ Pipeline execution can be masked based on the value of the Index in a specific dimension. It

is also possible to subtract a lower limit value to output a relative Index.

➢ Index masking is effective in link control (Group) when accessing different portions of data.

Figure 13 shows an example where Logical Channels B, C, and D, while applying overtake

control with the same transfer size, partially drive the Pipeline. Note that the PSS continues

to update the Index even in the masked regions.

Figure 12 Partial Pipeline Activation

Logical
Channel A

Logical
Channel B

Pipeline

Pipeline

Logical
Channel C

Pipeline

Logical
Channel D

Pipeline

Src Link

Src Link

Src Link

Dst
Link

Dst
Link

Dst
Link

Chain Group

Buffer

Many to One

One to Many
Write over the
double buffer

Base is destinaion
pointer

Src
Link

Dst
Link

WidthA B

C

D

Mask

18

3.9. Restore Function

➢ In some cases, such as with raw devices, link control may not be possible. For example, video

output must continue refreshing even if there is no data available. To handle such situations,

the PSS includes a Restore function that can drive the Pipeline even when the Index

conditions on both sides of the link are not met.

➢ The Restore function allows Pipeline execution to proceed even when link control conditions

are violated, and it outputs a Restore flag to indicate this state. The Pipeline can use this

flag to respond appropriately, such as by referencing the previous frame's Index.

➢ When the system enters a Restore state, it locks Index updates and command list switching

for the specified dimension and above. This lock remains in effect until the current frame is

completed.

For example, in Figure 14, transfer from frame B to frame X proceeds normally, but if the

switch to frame X occurs while frame A is being processed, the system enters a Restore

state (the Pipeline should re-reference the data from frame B). The Restore state is cleared

after the second transfer to frame X completes and frame A becomes valid again.

➢ Note that the Restore function does not operate if link control is not configured. Also, it is

limited to cases where only one link side (either Source or Destination) is configured.

➢ A forced Restore can be triggered from an external terminal using intOp, which is paired with

intSet. This allows for intentional transfers initiated by the Pipeline without updating the Index.

➢ For these Restore functions to operate, prior permission must be granted through the

command list. A flag must be set at the time of activation.

Figure 13 Example of Restore State Transition

B
X

A

B
X

A

B

Restore

X
A

Index

Index

Index

19

3.10. Command List

➢ The parameters of a logical channel can be automatically swapped each time processing is

completed by referencing a replacement address. Therefore, by creating a command list and

linking it via the replacement address, arbitrary sequential processing becomes possible.

Figure 14 Command List Serial Processing

➢ The swapped-in command list also controls the activation register. If the new command list

indicates a stop, the process ends after simply replacing the parameters.

3.11. Index Clearing and Continuation

➢ The 0 clearing at the end condition of Index and the 1 addition at the time of update are not

executed by setting the command (Cntl.Incr), and the current Index value can be succeeded

to the next command.

➢ For example, if different processing is to be performed on any given section of the Index, in

each command, set the Index not to clear 0 and the Index not to carry digits up. The upper

part of Fig. 16 shows the normal command transition, where the set ⊿ minutes are processed

sequentially. The lower arrow line in Figure. 16 is the transition that takes over the Index

value and processes the set ⊿ minus the Index value.

pss

Memory

Replace Addr Replace Addr

Replace Addr

Replace Addr

Auto load

Register Access

and/or

20

Figure 15 Index Clear and Non-Clear

➢ In addition, it is possible to implement programmatic processing that stacks multiple

commands on the same Index (for example, IndexY during screen scanning). Figure 17 shows

an example where a process with ΔY = 64 is divided into three areas, with three commands

assigned to each area. Each group of three commands is configured to loop among themselves

until the corresponding Y Index range is completed: [CL0 → CL1 → CL2] × 16 → [CL3 →

CL4 → CL5] × 32 → [CL6 → CL7 → CL8] × 16.

Figure 16 Command List Program

Cntl register Description

RepJump

At the end of Y, execute the command at the CL address +

0x20

When Y is not completed, execute the command of the

address written in the Rep register.

(Loop CLn→CLn+1→CLn+2 until each setting ΔY)

StatDone Clear '1' so that the exit flag does not continue to be set.

Command List wo/clear
Don’t clear IndexY

Replace Addr

WY=1

Don’t clear IndexY

Replace Addr

WY=2

Replace Addr

WY=4

0 1 2 3 4

0 1

20 1

0 1 2 3 4

Command List w/clear (normal)

Replace Addr

WY=1

Replace Addr

WY=2

Replace Addr

WY=4

Y=48-63

Y=16-47

Y=0-15

CL0: RepJump, Done(clr), Incr=7, Loop, Freq, Init, Y=0-15, next CL1

CL1: RepJump, Done(clr), Incr=7, Loop, Freq, Init, Y=0-15, next CL2

CL2: RepJump, Done(clr), Incr=3, Loop, Freq, Init, Y=0-15, Y=15 ? CL3 : CL0

CL3: RepJump, Done(clr), Incr=7, Loop, Freq, Init, Y=16-47, next CL4

CL4: RepJump, Done(clr), Incr=7, Loop, Freq, Init, Y=16-47, next CL5

CL5: RepJump, Done(clr), Incr=3, Loop, Freq, Init, Y=16-47, Y=47 ? CL6 : CL3

CL6: RepJump, Done(clr), Incr=7, Loop, Freq, Init, Y=48-63, next CL7

CL7: RepJump, Done(clr), Incr=7, Loop, Freq, Init, Y=48-63, next CL8

CL8: RepJump, Done(clr), Incr=0, Loop, Freq, Init, Y=48-63, Y=63 ? done : CL6

21

Incr

CL0,1,3,4,6,7 are set to '7' to repeat the same Y (no update)

CL2,5 is set to '3' so that only Y is incremented (only Y is

updated).

CL8 is set to '0' to terminate normally

Loop
CL0-7 are set to be continuous, CL8 is not set for

termination

Freq/Init Update command each time ΔX ends and processing begins

3.12. Activation and Termination

➢ There are four ways to activate a logical channel:

 Set parameters and operate the logical channel’s activation register

 Set parameters, then operate the startup vector and group activation register

 Set parameters and activate via an external terminal

 Set only the replacement address for parameters and operate the logical channel’s

activation register

➢ If the command list replacement flag (Init) is set at activation, new parameters will be fetched

from memory according to the replacement address. The activation register will also be

updated with new values.

➢ If the continuous execution flag (Loop) is set, the next execution will occur even after

reaching the termination condition. If the Init flag is also set, the command list will be replaced

with a new one. If not, the same command will be executed again under the same conditions

(only the highest Index of dimension 4 will be incremented).

➢ The behavior of command replacement differs depending on whether it occurs at the time of

activation or after activation. If Init = 1 at activation, all commands are replaced, and the

initial parameters specified during activation are ignored. Since the activation register is also

replaced, if the activation flag (Act) in the new activation register is 0, the operation will

terminate immediately. Refer to Figure 18 for the flow diagram.

➢ The value of the Index is preserved even when the logical channel is stopped, allowing for

interruption and resumption. To start from zero again, either perform a dummy stop-and-

clear activation before starting, or set the clear flag during command list replacement.

22

Figure 17 Command Replace Sequence

The state of each logical channel is managed individually. A simplified state transition diagram

is shown in Figure 19. IDLE indicates a stopped state, LOAD indicates command list loading,

DO represents execution, and DONE indicates completion. (Note: This diagram is simplified

for explanatory purposes.)

Initiate?

IndexX Done?

Loop?

Active?

Yes

No

Yes

Yes

No

Activate by user

Inactive

State

Command

Replace

Do index processing

Indexa Done?

Freq?

No
Yes

Yes
No

No

No

Yes

Indexa: Selected IndexX-W

Restore?

No
Yes

23

 Figure 19 State Transition

➢ The activation register must be operated individually for each logical channel, whereas the

activation vector is used to activate multiple logical channels at once. By setting flags for

the desired channels in the activation vector and then operating the group activation register

just once, simultaneous activation can be achieved.

➢ The external intSet signal for activation corresponds to setting Bit 0 of the activation register.

Since it is evaluated in one cycle, the pulse must be one clock width wide or it may be

continuously activated. Multiple assertions at the same time are allowed. This method takes

priority over register access.

➢ The external intClr signal for stopping behaves oppositely to intSet, stopping the specified

logical channel. Since it is evaluated in one cycle, the pulse must be one clock width wide or

it may be continuously activated. Multiple assertions at the same time are allowed. It also

takes priority over register access, but intSet has higher priority than intClr.

➢ In the stopped state, the Index is preserved, so if the channel is restarted without clearing it

via register access or other means, it will resume from where it left off.

3.13. Termination Conditions and Interrupts

➢ logical channel is considered to have terminated when the configured Index has completely

scanned all transfer dimensions. This means that the IndexC of dimension 4 is inverted. All

other Indexes reset to 0, even if intermediate dimensions have a transfer size of 0.

IDLE

LOAD

DO

DONE

Active & Init

Done & Inactive
Active & Init

Done & Finish

Active | Loop

Active & Loop & Init

Active & Loop & Init

Done &

Finish &

Init

LoadDone

Done

24

➢ The state of a logical channel can be checked using the StatMain field of the Cntl register. A

value of all zeros indicates the IDLE state. Register-based activation is prohibited when the

channel is not in IDLE state.

➢ Even if a stop to the activation register is performed and the state of the logical channel is

IDLE, a startup (piVld assertion) may be applied to the pipeline if a command is queued in the

command FIFO between the logical and physical channels. You can check the status of the

command FIFO using the Stat field of the PI Register.

➢ The command FIFO not Busy state allows detection of the complete IDLE of the relevant

logical channel in pss.

➢ If the Pipeline becomes locked for any reason and the command FIFO remains busy without

naturally clearing, the logical channels associated with that physical channel will also be

locked. Setting those logical channels to IDLE will not resolve that issue. In this case, you

must reset the corresponding Pipeline and also explicitly clear the command FIFO using the

Reset in the PC Register.

➢ Interrupts can be triggered upon termination of a logical channel. To enable this, set the

interrupt flag (Int) in the activation register.

➢ When a logical channel terminates, the termination condition flag (StatDone) is set to 1. This

condition can also trigger an interrupt, so take care with the interrupt timing. In continuous

processing scenarios, StatDone becomes 1 at the end of each execution. If you intend to

trigger an interrupt only at the end or at specific points in a continuous process, be sure to

clear the termination condition beforehand.

3.14. Interrupt-Driven Execution

➢ A logical channel n is activated when a handshake is established between the external signals

intVld[n] and intStall[n] (i.e., intVld is asserted and intStall is not). The intStall signal indicates

that the logical channel is currently active. To use intVld for activation, the corresponding

logical channel must be preconfigured—for example, by setting the Rep Register to

automatically update the command list upon interrupt-based activation.

25

➢ It is also possible to activate a specific logical channel from an interrupt triggered by another

logical channel. In this case, one or two Link Registers are used to designate the interrupt

target. Link Registers configured for interrupt purposes cannot be used for link control. It is

also possible to set the interrupt to be allowed only to specific destinations.

➢ If the interrupt drive is a pulse signal and the intStall signal at the interrupt destination is

standing, or if the interrupt is rejected in the IntInDis register, any interrupt input is ignored.

➢ Even if a logic channel interrupt cannot be accepted, if BufEn in the Int register is set to '1',

the interrupt state is held for one interrupt, and interrupt driving is performed when the

intStall signal is released.

➢ Note that if the logical channel interrupt destination returns to the interrupt source, an infinite

loop is started.

Figure 18 Outer and Inner Interrupt Activation

3.15. Priority Control

➢ Each logical channel can be assigned a priority level. It has a register which reduces the

priority value (Prior) by 1 every 2PNR cycles, and when a request is accepted, 16 is added to

the register. The resulting value is added as a weight in the arbitration process. This

mechanism effectively records the difference between the number of activations and the

target activation rate per cycle (Prior / 2PNR+4). By maintaining this difference in a steady

state, activation occurs in a way that is weighted according to the priority, leading to an

average activation rate of approximately (Prior / 2PNR+4) activations per cycle.

Physical
Channel

Activation

piVld
piStall

Logical
Channel

Activation

intVld
intStall

Logical
Channel
ControlBufCh Filter

Disable

x2CNR

interrupt

時間

∑アクセス量－∑設定帯域

t

Diff

26

Figure 19 Difference between activation and sum of priority per cycle

➢ Finally, priority control is performed on the physical channel. That is, the priority Prior is set

for the physical channel that is set in the logical channel.

➢ If it is ready to be activated, it is activated regardless of the priority. On the other hand, if

the total amount of priority settings for logical channels exceeds the physical capacity, the

logical channels that exceed the physical capacity are equally allocated to each other.

➢ If Prior = 0, the channel will always have the lowest priority (weight = 0). If Prior = 0xF, the

channel will always have the highest priority (weight = 1).

4. Register Description

4.1. Overview

➢ All registers are accessed through the control bus interface.

➢ Some settings need to be carefully timed as they may affect the operation and performance

of the Pipeline.

➢ The following access types are used in register definitions:

• R — Read only

• R/W — Read and write

• R/WC — Read / Write-to-clear

➢ Do not access registers marked as Reserved. When writing to Reserved fields, be sure to set

the value to '0'.

➢ In address and data descriptions, the symbol 'x' indicates a Don't Care value.

➢ Asynchronous reset initializes all registers, while synchronous reset initializes only certain

fields in the Command register. In the detailed register descriptions, fields that are initialized

by synchronous reset are marked with a specific symbol (described below).

† Registers to be reset synchronously

27

4.2. Definition（Command）

Address Register Name Description

0000_0000 +

64n
Cntl[n] Activation Register

0000_0004 +

64n
Rep[n] Replacement Register

0000_0008 +

64n
Pipe[n] Pipeline Register

0000_000c +

64n
Mask[n] Mask Register

0000_0010 +

64n
Link0[n] link Register0

0000_0014 +

64n
Link1[n] Link Register1

0000_0018 +

64n
Width0[n] Transfer Size Register0

0000_001c +

64n
Width1[n] Transfer Size Register1

0000_0020 +

64n
Tmp0[n] Pre-Update Index Register0

0000_0024 +

64n
Tmp1[n] Pre-Update Index Register1

0000_0028 +

64n
Cur0[n] Post-Update Index Register0

0000_002c +

64n
Cur1[n] Post-Update Index Register1

n=0～2CNR -1

The address space from 0x0000_000C onward is assigned per logical channel.

28

4.3. Definition (General)

Address Register Name Description

0000_8000 Reset Reset Control

0000_8004 Clock Clock Control

0000_8008 Info Status (Overall)

0000_800c Int Interrupt Enable (Overall)

0000_8014 Timer Priority Control Timer

0000_8018 Grp Activation (Overall)

0000_8200 +

4n
ClearVec[n] Clear Vector（n=0～2CNR/32-1）

0000_8300 +

4n
PauseVec[n] Stop Vector（n=0～2CNR/32-1）

0000_8400 +

4n
ActVec[n] Activation Vector（n=0～2CNR/32-1）

0000_8500 +

4n
StatVec[n] Status Vector（n=0～2CNR/32-1）

0000_8600 +

4n
DoneVec[n] Stop Vector（n=0～2CNR/32-1）

0000_8700 +

4n
IntVec[n] Interrupt Vector（n=0～2CNR/32-1）

0000_8800 +

4n
IntDisVec[n] Interrupt Disable Vector（n=0～2CNR/32-1）

0000_8900 +

4n
IntInOnVec[n]

Interrupt Logical Channel Enable Vector （ n=0 ～

2CNR/32-1）

0000_9000 +

4n
IntInChVec[n] Interrupt Logical Channel Vector（n=0～2CNR/4-1）

0000_c000 +

256n
PC[n] Pipeline control（n=0～2PNR-1）

0000_c004 +

256n
PD[n] Pipeline Configuration（n=0～2PNR-1）

0000_c008 +

256n
PI[n] Pipeline infomation（n=0～2PNR-1）

29

4.5. Details (Command)

4.5.1.1. Cnt[n] Register

Name Type Default Description

LinkO0,1[1:0] W x Controls link behavior toward other logical channels. It

does not affect the channel’s own link control.

In Mag mode, the Mag register is referenced, and the link

pointer is multiplied to enable proportional link control.

In Mask mode, the Mask register is referenced, and the

link pointer is masked.

Mask mode is not enabled if either LinkO0 or LinkO1 is

set to 0 in Mag mode.

LinkO Description

0 Mag mode

30

1 Mask mode

2 Always block

3 Always free

PipeLevel[1:0] W x Set the dimension of the Index mask for the Pipeline.

Level Description

0 Mask for IndexX

1 Mask for IndexXY

2 Mask for Indexz

3 Mask for Indexw

PipeMode W x Set to '1' to enable the Restore function for Pipelines.

PipeDisable W x Set to '0' to allow Pipeline execution. When set to '1',

only the Index is updated and the Pipeline is bypassed.

RepMode W x Set to '1' to clear the Index during replacement. Note

that if Loop in the Cntl Register is '0' and Init is '1', and

replacement is performed at the IndexX level, there is a

risk of entering an infinite loop without meeting the

termination condition.

RepJump W x Set to '1' to control the starting address of the

command during replacement. If the termination

condition is met, the address will be the current address

plus 0x20. If the termination condition is not met, or if

the setting is '0', the address will be taken from the Rep

Register.

StatCur R 0 Indicates the termination value of the updated Index

(value of dimension 4). Writing '1' will clear it. It is also

cleared during automatic loading if RepMode is set to

'1'.

StatTmp R 0 Indicates the pre-update termination value of the Index

(value of dimension 4). Writing '1' will clear it. It is also

cleared during automatic loading if RepMode is set to

31

'1'.

StatMain R 0 Indicates the status of individual logical channels.

statMain Name Description

0 IDLE Stop

1 PROG In Progress

2 LOCK
Waiting for

Scheduling

3 WAIT
Waiting for

Processing

4 FLUSH Terminating

5 REST Restoring

6 - Reserved

7 - Reserved

8 LDRQn
Requesting New

Command

9 LDRQo
Requesting

continued Command

10 - Reserved

11 LDRDo Waiting for Command

12 LDDO
Loading for

Command

13 - Reserved

14 - Reserved

15 - Reserved

StatRest R 0 Indicates that the system is in a Restore state. It is

automatically cleared upon activation.

StatDone† R/WC 0 Indicates a termination condition. Writing '1' will clear it.

It can also serve as an interrupt trigger.

Incr[2:0] R/W x Suppresses Index clearing and carry-up. No Clear

means the corresponding Index will not be cleared even

if it reaches the termination condition. No Carry-Up

32

means the corresponding Index will not be incremented

even when a lower Index reaches its termination

condition.

Incr No clear No Carry-Up

0 - -

1 IndexW IndexC

2
IndexZ

IndexW

IndexW

IndexC

3

IndexY

IndexZ

IndexW

IndexZ

IndexW

IndexC

4 - IndexC

5 IndexW
IndexW

IndexC

6
IndexZ

IndexW

IndexZ

IndexW

IndexC

7

IndexY

IndexZ

IndexW

IndexY

IndexZ

IndexW

IndexC

Prior[1:0] R/W x Sets the priority level. '0' is the lowest, and '3' is the

highest. Priority level '3' gives preference to the same

CID (current logical channel) in subsequent processing

with the same PID. In this case, the corresponding

physical channel’s PD[n].Lock must be set to '1';

otherwise, the same CID will not be prioritized.

Delta[2:0] R/W x Sets the fragment size, which becomes 4Delta. However,

if Delta = 7, the value is replaced with WidthX + 1 from

the Width register.

PID[4:0] R/W x Sets the Pipeline number. Only the bits PID[PNR-1:0]

are valid.

33

Turn[1:0] R/W x Sets the temporary termination condition for the

Pipeline. Note that the level is in reverse order.

Turn Description

0 Stop at the end of IndexW.

1 Stop at the end of IndexZ.

2 Stop at the end of IndexY.

3 Stop at the end of IndexX

Int† R/W 0 Set to '1' to trigger an interrupt on the termination

condition. However, if the IntEn bit in the Int Register is

not set to '1', the cntlIrq signal will not be asserted.

Loop† R/W 0 Set to '1' to continue execution even after the

termination condition is met.

Freq† R/W 0 Specifies the command replacement behavior when Init

is set to '1'.

Init† R/W 0 If set to '1' in the IDLE state, the command (from the

Cntl to the Width register) will be replaced immediately

after activation, and the system will activate with new

parameters. The behavior after activation will vary

depending on the Freq setting, which controls how the

replacement operation behaves.

Init Freq Description

0 0
No Replacement

0 1

1 0

Replacement at the end of Indexa

processing (where a refers to the

specified Turn).

1 1
Replacement at the end of IndexX

processing.

Opt† R/W 0 Set activation options.

34

Act† R/W 0 Activation settings. When reading, it will be set to '1' if

the system is in an execution state.

Opt Act Symbol Description

0 0 Halt stop

0 1 Start activation

1 0 Clear stop＆Initialization

1 1 Step
No Pipeline

Processing

4.5.1.2. Rep [n] Register

[Address: 0x0001_0004 + 64n]

31 28 24 20 16 12 8 4 0

Addr

Name Type Default Description

Addr[31:0] R/W x Set the starting address of the command (from Cntl to

the Width Register).

※ For beppu, [0] = 1 is required, but it is prohibited for

chichibu.

4.5.1.3. Pipe[n] Register

[Address: 0x0001_0008 + 64n]

31 28 24 20 16 12 8 4 0

Addr

Name Type Default Description

Addr[31:0] R/W x Set the value to be sent to the Pipeline (via the piAddr

signal).

35

※ For beppu, [0] = 1 is required, but it is prohibited for

chichibu.

4.5.1.4. Mag/ Mask[n] Register

[Address: 0x0001_000c + 64n]

31 28 24 20 16 12 8 4 0

Mult1/Upper Mult0/Lower

Name Type Default Description

Mult1[15:8] R/W x Set the multiplication factor minus 1 to be applied to

the pointer of the destination in Link1.

Mult1[7:0] R/W x Set the multiplication factor minus 1 to be applied to

the pointer of the source in Link1.

Mult0[15:8] R/W x Set the multiplication factor minus 1 to be applied to

the pointer of the destination in Link0.

Mult0[7:0] R/W x Set the multiplication factor minus 1 to be applied to

the pointer of the source in Link0.

Lower[15:0] R/W x Set the lower limit of the mask. Index values (specified

by the Level in the Pipe Register) that are below this

value, excluding the value itself, will be masked. This is

equivalent to setting the En bit of the Pipe Register to

'0'.

If the Upper value is '0', this means something different,

as described below.

Lower Description

Bit0
Output WidthX - IndexX when set

to '1'.

Bit1 Output WidthY - IndexY when set

36

to '1'.

Bit2
Output WidthZ - IndexZ when set

to '1'.

Bit3
Output WidthW - IndexW when set

to '1'.

Bit4

Perform the following 1-

dimensional access when set to

'1':

Link control requires careful

attention to the Level setting

(select a level where Width = 0 to

avoid incorrect pointer

comparisons).

WidthX + WidthY * 65536 + WidthZ

* 65536² + WidthW * 65536³.

Bit11-8

Set the invalid bits on the MSB

side of the target Index during

Source link control.

(For example, if set to 3, the lower

13 bits will be valid.)

Bit15-12

Set the invalid bits on the MSB

side of the target Index during

Destination link control.

(For example, if set to 3, the lower

13 bits will be valid.)

4.5.1.5. Link0,1[n] Register

[Address: 0x0001_0010 + 64n, 0x0001_0014 + 64n]

31 28 24 20 16 12 8 4 0

Offset CID Space Level En

Edge

Name Type Default Description

37

Offset[15:0] R/W x Set the offset or scale during link control.

Offset[15:14] Description

0 Use Offset[13:0] as the offset.

1

Add Tmp pointer + 1 to the

condition, along with the

destination Cur.

2
Scale the source Tmp pointer by

2Offset[11:8].

3
Scale the destination Cur pointer

by 2Offset[11:8].

CID[7:0] R/W x When En = '1' or En = '3', set the logical channel number

to be referenced. When En = '2', set the logical channel

number to be interrupted.

Only CID[CNR-1:0] is valid.

Edge R/W x Set to '1' if the offset is not ignored even when there is

a periodic difference between the referenced Index and

the channel's own Index.

Space[2:0] R/W x Set the buffer size to 2Space. However, if Space = '0', the

Width + 1 specified by the Level in the Width register

will be used (as explained in the Level description, for

IndexC reference, it will be 1).

If the Width of the referenced Level is 0, only settings

of 0 or 1 are guaranteed to function properly.

Level[1:0] R/W x Set the referenced Index. However, if the Width

corresponding to this Level is 0, the reference will be

made to IndexC.

Level Description

0 Reference to IndexX

1 Reference to Indexy

2 Reference to Indexz

38

3 Reference to Indexw

En[1:0] R/W x Set the link control.

En Description

0 NOP

1 Reference to Source

2 Int occurrence

3 Reference to Destination

4.5.1.6. Witch0,1[n] Register

[Address: 0x0001_0018 + 64n]

31 28 24 20 16 12 8 4 0

Width1 Width0

[Address: 0x0001_001c + 64n]

31 28 24 20 16 12 8 4 0

Width3 Width2

Name Type Default Description

Width0,1,2,3[15:0] R/W x Set the transfer size minus 1 for dimensions 0, 1, 2, and

3.

4.5.1.7. Tmp0,1[n] Register

[Address: 0x0001_0020 + 64n]

31 28 24 20 16 12 8 4 0

Tmp1 Tmp0

[Address: 0x0001_0024 + 64n]

31 28 24 20 16 12 8 4 0

39

Tmp3 Tmp2

Name Type Default Description

Tmp0,1,2,3[15:0] R x Indicates the Index for dimensions 0, 1, 2, and 3 (pre-

update). It is not automatically cleared at activation, but

will be cleared at the termination condition. This is for

monitoring purposes.

4.5.1.8. Cut0,1[n] Register

[Address: 0x0001_0028 + 64n]

31 28 24 20 16 12 8 4 0

Cur1 Cur0

[Address: 0x0001_002c + 64n]

31 28 24 20 16 12 8 4 0

Cur3 Cur2

Name Type Default Description

Cur0,1,2,3[15:0] R x Indicates the Index for dimensions 0, 1, 2, and 3 (pre-

update). It is not automatically cleared at activation, but

will be cleared at the termination condition. This is for

monitoring purposes.

4.6. Details (General)

4.6.1.1. Resett Register

 [Address: 0x0000_8000]

31 28 24 20 16 12 8 4 0

Reset

40

Name Type Default Description

Reset R/W 0 Synchronous reset. After setting to '1', the system

enters an internal reset state and is automatically

cleared. Unlike the reset_n signal, the contents of other

registers are preserved.

4.6.1.2. Clock Register

 [Address: 0x0000_8004]

31 28 24 20 16 12 8 4 0

GateOff

Name Type Default Description

GateOff R/W 0 Gated Clock Off mode. When set to '1', all bits of the

gate signal are fixed to '1'

4.6.1.3. Info Register

 [Address: 0x0000_8008]

31 28 24 20 16 12 8 4 0

 TO

Stat

Done

Int

Name Type Default Description

TO R 0 Indicates that there is a timeout interrupt on any

physical channel.

Stat R 0 Indicates that there is an interrupt on any logical

channel.

Done R 0 Indicates that any logical channel has terminated.

41

Int R 0 Indicates that any logical channel has terminated and

interrupts are enabled.

4.6.1.4. Int Register

 [Address: 0x0000_800c]

31 28 24 20 16 12 8 4 0

StallEn BufEn TOEn IntEn

Name Type Default Description

StallEn R/W 0 When set to '1', the cntlIrq signal is asserted when the

activation state is Stall.

BufEn R/W 0 When set to '1', the cntlIrq signal is asserted during

logical channel interrupts.

TOEn R/W 0 When set to '1', Info.TO is asserted to the cntlIrq signal.

IntEn R/W 0 When set to '1', Info.Int is asserted to the cntlIrq signal.

4.6.1.5. Timer Register

 [Address: 0x0000_8014]

31 28 24 20 16 12 8 4 0

 Watch Weight

Name Type Default Description

Watch[4:0] R/W 0 Timeout measurement indicator. A timeout occurs when

all bits from the bit indicated by Watch (starting from

the MSB of the 32-bit execution cycle of the physical

channel) to the LSB are set to '1'.

Weight[2:0] R/W PNR Sets the timing for priority weight control. Every 2Weight

cycles, the priority is decremented by the weight value

42

assigned to each logical channel.

4.6.1.6. Grp Register

 [Address: 0x0000_8018]

31 28 24 20 16 12 8 4 0

Activate

Name Type Default Description

Activate W x Activate all logical channels that are set to '1'.

4.6.1.7. ClearVec[n] Register

 [Address: 0x0000_8200 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

Clear[32n+m] (m=0-31)

Name Type Default Description

Clear R/W 0 Internal information clear vector. Set '1' in the portion

counted from the LSB based on the logical channel

number to be cleared. This clears the information of

logical channels affected by a slave causing

inconsistency.

4.6.1.8. PauseVec（n）Register

 [Address: 0x0000_8300 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

43

Pause[32n+m] (m=0-31)

Name Type Default Description

Pause R/W 0 Stop vector. Set '1' in the portion counted from the LSB

based on the logical channel number to be stopped. This

blocks automatic activation via the Init in the Cntl

Register. Transition from the IDLE state is not blocked.

4.6.1.9. ActVec[n] Register

 [Address: 0x0000_8400 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

Act[32n+m] (m=0-31)

Name Type Default Description

Act R/W 0 Activation vector. Set '1' in the portion counted from

the LSB based on the logical channel number to be

activated. This is used with the Activate in the Grp

Register.

4.6.1.10. StartVec Register

 [Address: 0x0000_8500 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

Stat[32n+m] (m=0-31)

Name Type Default Description

Stat R 0 Status vector. The state is determined by examining the

portion counted from the LSB based on the logical

44

channel number. A value of '1' indicates that the

channel is active.

4.6.1.11. DoneVec[n] Register

 [Address: 0x0000_8600 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

Done[32n+m] (m=0-31)

Name Type Default Description

Done R 0 Termination vector. The termination status is

determined by examining the portion counted from the

LSB based on the logical channel number. A value of '1'

indicates that the channel has terminated.

4.6.1.12. IntVec[n] Register

 [Address: 0x0000_8700 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

Int[32n+m] (m=0-31)

Name Type Default Description

Int R 0 Interrupt vector. The interrupt status is determined by

examining the portion counted from the LSB based on

the logical channel number. A value of '1' indicates that

there is an interrupt.

4.6.1.13. IntDisVec[n] Register

45

 [Address: 0x0000_8800 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

IntDis[32n+m] (m=0-31)

Name Type Default Description

IntDis R/W 0 Logical channel interrupt disable vector. Based on the

logical channel number, set '1' in the portion counted

from the LSB to disable the interrupt for that channel.

4.6.1.14. IntInOnVec[n] Register

 [Address: 0x0000_8900 + 4n (n=0-2CNR/32-1)]

31 28 24 20 16 12 8 4 0

IntOnEn[32n+m] (m=0-31)

Name Type Default Description

IntOnEn R/W 0 Logical channel interrupt specification enable vector.

Based on the logical channel number, set '1' in the

portion counted from the LSB to allow only the

specified logical channel as an interrupt source for

IntInCh.

4.6.1.15. IntInChVec[n] Register

 [Address: 0x0000_9000 + 4n (n=0-2CNR/4-1)]

31 28 24 20 16 12 8 4 0

IntInCh[32n+:8m] (m=0-3)

46

Name Type Default Description

IntInCh R/W 0 Logical channel interrupt specified logical channel

vector. Based on the logical channel number, set the

portion counted from the LSB to specify the interrupt

source logical channel.

4.6.1.16. PC[n] Register

 [Address: 0x0000_c000 + 256n]

31 28 24 20 16 12 8 4 0

Reset

Name Type Default Description

Reset WC 0 Clear the internal state related to Pipeline number n.

4.6.1.17. PD[n] Register

 [Address: 0x0000_c004 + 256n]

31 28 24 20 16 12 8 4 0

 DispMax Link

 IndexMap3,2,1,0 Lock

Name Type Default Description

IndexMap0[1:0] R/W 0 Define the assignment of the IndexX signal to be output

to the Pipeline. It also affects the oFin signal.

IndexMap0 IndexX signal for the Pipeline

0 Internal IndexX output

1 Internal IndexY output

2 Internal IndexZ output

47

3 Internal IndexW output

IndexMap1[1:0] R/W 0 Definition of the IndexX signal to be output to the

Pipeline.

IndexMap1 IndexY signal for the Pipeline

0 Internal IndexY output

1 Internal IndexZ output

2 nternal IndexW output

3 nternal IndexX output

IndexMap2[1:0] R/W 0 Definition of the IndexZ signal to be output to the

Pipeline.

IndexMap2 IndexZ signal for the Pipeline

0 nternal IndexZ output

1 nternal IndexW output

2 nternal IndexX output

3 nternal IndexY output

IndexMap3[1:0] R/W 0 Definition of the IndexW signal to be output to the

Pipeline.

IndexMap3 IndexW signal for the Pipeline

0 nternal IndexW output

1 nternal IndexX output

2 nternal IndexY output

3 nternal IndexZ output

DispMax[2:0] R/W 0 Specify the maximum number of instructions to be held

for the relevant Pipeline (issued instructions minus

returned instructions). This setting is used when the

output buffer size and negotiation control cannot be

adjusted.

48

DispMax Maximum number of instructions to be held.

0 No Limit.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Link[1:0] R/W 0 Control the physical connection with the relevant

Pipeline. The setting takes effect immediately upon

configuration.

Link Connection Type.

0 Connect the Pipeline.

1 Force terminate the Pipeline (Ground).

2 Terminate the Pipeline with a new entry (Short).

3 Temporarily hold the Pipeline (Open).

Lock R/W 0 Lock the arbitration of the logical channel that activates

the relevant Pipeline until the processing of the logical

channel is completed. Once the Pipeline is activated,

the control of the same logical channel is occupied.

4.6.1.18. PI [n] Register

 [Address: 0x0000_c008 + 256n]

31 28 24 20 16 12 8 4 0

 TO

Stat

Name Type Default Description

TO RWC 0 '1' indicates that the Pipeline is in a Time Out state. It

49

shows that the 28-bit counter has completed one cycle.

It is cleared with a '1' write.

Stat R 0 '1' indicates that the Pipeline is in a Busy state

(difference between the count of piVld & !piStall and

poVld & !poStall). Since it is managed by the PSS, the

observed state may not always match the actual

Pipeline state exactly, depending on factors such as

observation time.

